论文部分内容阅读
蚁群优化算法(Ant Colony Optimization ACO)是一种新颖的仿生进化类算法,适用于求解各种复杂组合优化问题。当前该研究方法尚处于研究的初级阶段,本文针对传统的蚁群算法容易出现早熟和停滞现象,提出了一种新的自适应蚂蚁算法,对传统的蚁群算法中的信息素参数进行动态的自适应调整,并选取几个典型TSP问题进行实验,结果表明改进蚁群算法具有更好的搜索全局最优解的能力以及更好的稳定性和收敛性。