论文部分内容阅读
由于煤电价格的波动受多种不确定因素的影响,且煤价和电价之间还存在非常复杂的耦合关系,它是一个典型的非线性系统,所以使用传统的方法来建立煤电价格的预测模型非常困难。针对这种情况,提出了一种基于粒群算法(PSO)和BP神经网络的煤电价格预测方法。采用PSO训练BP神经网络,不仅克服了BP神经网络算法易于陷入局部最优的缺点,而且可以提高网络的收敛速度和预测精度。结合煤电价格的历史数据,在Matlab平台上进行了仿真实验,验证了该预测模型的优越性。