论文部分内容阅读
基于空间几何原理提出了一个双星无源定位方案,方案中包括两个观测坐标系和一个基础坐标系.每个观测坐标系中分别存在一条由观测卫星发出指向目标飞行器的射线,考虑到实际观测中存在各种误差,任意两颗观测卫星对目标飞行器的定位方向一般不在同一个平面内(即为异面直线),假定两条异面直线的公垂线段的中点(相交的情况下为交点)是目标飞行器所在的位置,而公垂线段的长度表征两颗卫星的观测误差.利用空间飞行器的观测数据计算了飞行器在基础坐标系中的位置坐标并进行了误差估计.利用一个基于伴随同化方法的数值模型估计了空间飞行器主动段的轨道.正向模型用来模拟飞行器的运动过程,伴随模型用来优化参数.通过同化空间飞行器在基础坐标系下的观测数据得到了空间飞行器的轨道.设计了数值实验以检验该模型的合理性,实验结果表明了双星无源定位系统的正确性,通过同化卫星对飞行器的观测数据,该伴随同化模型可以对空间飞行器的轨道进行成功估计.
Based on the principle of space geometry, a dual-star passive positioning scheme is proposed, which includes two observation coordinate systems and one basic coordinate system. There is a ray in each observation coordinate system that is sent by the observation satellite to the target aircraft respectively. Considering the actual observation There are errors in any of the two observation satellites on the target aircraft orientation is generally not in the same plane (ie, a straight line), the assumption that the two perpendicular lines perpendicular to the midpoint of the vertical line (intersects the case of The intersection point) is the location of the target aircraft, and the length of the common vertical section characterizes the observation error of the two satellites.Using the observation data of the spacecraft to calculate the position coordinates of the aircraft in the basic coordinate system and make an error estimation, The numerical model of the assimilation method estimates the orbit of the active segment of the spacecraft. The forward model is used to simulate the movement of the aircraft and the model is used to optimize the parameters. By assimilating the observations of the space vehicle in the basic coordinate system, The numerical experiment is designed to verify the rationality of the model, the experimental results show Star correctness passive location system, by assimilation of satellite observation data for the aircraft, the adjoint model can be successfully carried out an estimate of the orbit of the spacecraft.