论文部分内容阅读
为解决混沌时间序列预测中的延迟时间、嵌入维与模型参数等优化问题,提出一种基于均匀设计优化预测模型参数的混沌时间序列预测模型(UD-LSSVM)。首先采用均匀设计产生多个参数组合,并采用最小二乘支持向量机得到每组参数的均方根误差(RMSE);然后最小二乘支持向量机对参数进行全组合寻优建立最优混沌时间预测模型;最后进行混沌时间序列仿真测试。仿真结果表明,相对于对比模型,UD-LSSVM不仅可以快速、准确找到延迟时间、嵌入维与模型参数的最优组合,而且提高了混沌时间序列预测的预测精度。