论文部分内容阅读
传统混合高斯模型在进行运动目标检测时,由于背景模型阈值和模型学习速率均采用固定参数,不能有效适应复杂变化的场景。为解决该问题,提出一种基于匹配反馈量改进混合高斯模型的前景检测算法。通过对模型控制参数进行研究分析,提出一种根据各像素点匹配情况对背景模型阈值进行动态调整,并根据反馈量自适应调节学习速率的策略。实验结果表明,该方法应对复杂变化的视频监控场景时可以有效、准确、快速地提取前景目标。