论文部分内容阅读
提出了一种采用免疫粒子群优化算法对动态递归神经网络进行训练的方法,实现了对Elman网络的结构、权重、结构单元的初始输入和自反馈增益因子等参数的同时进化训练。进而针对非线性系统分别提出了相应的辨识与控制算法,并设计出了相应的辨识器和控制器。最后以超声马达为对象进行了仿真,结果表明:基于所提出的算法而设计的辨识器和控制器在辨识和控制过程中不仅都能取得很高的收敛精度和速度,而且对于随机扰动有较强的鲁棒性,从而为非线性系统的辨识和控制提供了一条新的途径。