论文部分内容阅读
现有的交互式神经音乐生成方法主要存在控制模式不灵活、数据标注困难以及模型难以优化等问题。针对这些问题,提出了一种基于变分自编码器(VAE)的无监督交互式旋律生成方法。通过为VAE引入显式的旋律轮廓条件推理学习,实现了对生成旋律局部与全局特征的灵活控制。实验表明,该方法易于优化且具有良好的旋律局部与全局特征的控制能力。通过对大量生成样本的分析,证明了模型从音乐数据中学习到了有用的音乐知识。