【摘 要】
:
高速列车在运行时产生的实时监测数据通常用变长编码压缩技术进行处理,以便于传输和存储。然而这种方法会使得压缩数据内部结构复杂,导致相应的数据解压缩过程只能遵照压缩数据的组成顺序进行,效率较低。为提升高速列车监测数据的解压缩效率,借助推测技术,提出一种面向高速列车监测数据的并行解压缩算法。首先,研究高速列车监测数据的结构特征,分析影响数据划分的内部依赖;其次,利用推测技术消解内部依赖后,对数据进行试探
【基金项目】
:
国家重点研发计划项目(2018YFB1703000),国家自然科学基金−高速铁路联合基金重点项目(U173410),陕西省教育厅科学研究计划专项(21JK0781)。
论文部分内容阅读
高速列车在运行时产生的实时监测数据通常用变长编码压缩技术进行处理,以便于传输和存储。然而这种方法会使得压缩数据内部结构复杂,导致相应的数据解压缩过程只能遵照压缩数据的组成顺序进行,效率较低。为提升高速列车监测数据的解压缩效率,借助推测技术,提出一种面向高速列车监测数据的并行解压缩算法。首先,研究高速列车监测数据的结构特征,分析影响数据划分的内部依赖;其次,利用推测技术消解内部依赖后,对数据进行试探性划分;然后在分布式计算环境中对划分结果并行地进行解压;最后将并行解压缩结果合并起来,从而提高针对高速列
其他文献
在自然语言处理(NLP)中,句法信息是完整句子中词汇与词汇之间的句法结构关系或者依存关系,是一种重要且有效的参考信息。语义解析任务是将自然语言语句直接转化成语义完整的、计算机可执行的语言。在以往的语义解析研究中,少有采用输入源的句法信息来提高端到端语义解析效率的工作。为了进一步提高端到端语义解析模型的准确率和效率,提出一种利用输入端句法依存关系信息来提高模型效率的语义解析方法。该方法的基本思路是先
针对卷积神经网络模型参数规模越来越大导致难以在计算与存储资源有限的嵌入式设备上大规模部署的问题,提出一种降低参数规模的卷积神经网络模型压缩方法。通过分析发现,卷积层参数量与输入输出特征图数量以及卷积核大小有关,而全连接层参数数量众多且难以大幅减少。通过分组卷积减少输入输出特征图数量,通过卷积拆分减小卷积核大小,同时采用全局平均池化层代替全连接层的方法来解决全连接层参数数量众多的问题。将上述方法应用于LeNet5和AlexNet进行实验,实验结果表明通过使用组合压缩方法对LeNet5模型进行最大压缩后,参数
技术体制符合性审查是信息系统立项时的一个重要环节,是对新立项系统在体系中的定位作用和标准符合性的一个有效评估,也是对项目风险控制的一种重要措施。而目前对于技术体制符合性审查验证通常以人工审查、专家经验判断为主,缺乏有效的技术支撑手段。本文研究以自然语言处理(NLP)为主要技术手段的技术体制审查方法,提出针对技术体制审查的NLP命名实体识别算法,并基于技术体制审查业务和审查算法,实现技术体制审查系统。
针对自然界中不同种类植物的叶片可能存在类间差异小而导致一些边缘轮廓相似的本土植物和外来入侵植物叶片识别错误的问题,提出一种PF-VGGNet模型。常用的VGGNet模型在图像分类上表现优秀,采用顺次连接的结构,可以很好地提取图像的高级语义信息特征,但一些图像浅层的轮廓和纹理特征也对分类起到关键作用。PF-VGGNet模型可以将浅层轮廓和纹理特征与网络深层高级语义信息融合,实现对植物叶片的自动识别。
针对极限学习机(ELM)中隐藏层到输出层存在误差的问题,通过分析发现误差来源于求解隐藏层输出矩阵H的Moore-Penrose广义逆矩阵H~?的过程,即矩阵H~?与单位矩阵有偏差,可根据偏差的程度来选择合适的输出矩阵H以获得较小的训练误差。根据广义逆矩阵和辅助矩阵的定义,首先确定了目标矩阵H~?H和误差指标L21范数,其次通过实验分析表明H~?H的L21范数与ELM的误差呈显著线性相关,最后通过引
针对已有差分隐私高维数据发布方法无法有效兼顾数据间复杂属性的关联关系和计算成本的问题,提出一种基于聚类分析技术的差分隐私高维数据发布方法 PrivBC。首先,基于K-means++设计属性聚类方法,引入最大信息系数量化属性间的关联关系,并对具有高度关联关系的数据属性进行聚类。其次,对聚类产生的各个数据子集进行如下操作:计算关系矩阵以缩减属性对的候选空间,并构建满足差分隐私的贝叶斯网络。最后,根据贝
在实际生活中,可以很容易地获得大量系统数据样本,却只能获得很小一部分的准确标签。为了获得更好的分类学习模型,引入半监督学习的处理方式,对基于未标注数据强化集成多样性(UDEED)算法进行改进,提出了UDEED~+——一种基于权值多样性的半监督分类算法。UDEED+主要的思路是在基学习器对未标注数据的预测分歧的基础上提出权值多样性损失,通过引入基学习器权值的余弦相似度来表示基学习器之间的分歧,并且从
信用风险是商业银行所面临的主要金融风险之一,而传统的基于统计学习的信用评分方法不能有效利用现有的特征学习方法,因此预测准确度不高。为解决这个问题,提出一种增强多维多粒度级联森林的方法建立信用评分模型,借鉴残差学习的思想,建立了多维多粒度级联残差森林(grc Forest)模型,从而大幅增加提取的特征。除此之外,使用多维多粒度的扫描尽可能多地提取原始数据的特征,从而提高了特征提取的效率。对各模型的实
图像描述任务是图像理解的一个重要分支,它不仅要求能够正确识别图像的内容,还要求能够生成在语法和语义上正确的句子。传统的基于编码器-解码器的模型不能充分利用图像特征并且解码方式单一。针对这些问题,提出一种基于注意力机制的多层次编码和解码的图像描述模型。首先使用Faster R-CNN(Faster Region-based Convolutional Neural Network)提取图像特征,然后
针对物联网(IoT)数据源的多样化、数据的非独立同分布性、边缘设备计算能力和能耗的异构性,提出一种集中学习和联邦学习共存的移动边缘计算(MEC)网络计算迁移策略。首先,建立与集中学习、联邦学习都关联的计算迁移系统模型,考虑了集中学习、联邦学习模型产生的网络传输延迟、计算延迟以及能耗;然后,以系统平均延迟为优化目标、以能耗和基于机器学习准确率的训练次数为限制条件构建面向机器学习的计算迁移优化模型。接