论文部分内容阅读
非负矩阵分解具有较好的特征提取性能,广泛应用于数据融合领域,而粒子滤波则是一种处理非线性和非高斯动态系统状态估计的有效方法.该文结合两种算法的优点,提出了一种基于改进粒子滤波的红外小目标跟踪算法.利用NMF融合当前与之前的粒子分布权重,减小经典粒子滤波退化发散带来的精度误差.避免了目标遮挡及暂时消失带来的跟踪错误.仿真实验证明本文算法相对于经典粒子滤波,具有更好的跟踪精度和稳定性.