Evaluation of FY-3/VIRR Sea Surface Temperature Data for Climate Applications

来源 :气象学报(英文版) | 被引量 : 0次 | 上传用户:birdwy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
We evaluated the sea surface temperature(SST)products derived from the visible infrared radiometer on board the Fengyun-3 satellites(FY-3/VIRR)during 2016-2018 from the perspective of climate applications.The data had pre-viously been reprocessed by the National Satellite Meteorological Center of China Meteorological Administration based on an updated SST retrieval algorithm.The overall consistency between the FY-3/VIRR SST data and the op-timum interpolation SST version 2.1(OIv2.1)was better for monthly means than for pentad means,and showed a clear dependence on the season and location.There was better consistency in winter than in summer,and in the tropi-cal central-eastern Pacific than in the western Pacific warm pool,tropical North Indian Ocean,and tropical Atlantic Ocean.The monthly deviation of the global average SST anomaly was-0.03±0.07℃and the average root-mean-square errors(RMSEs)presented clear seasonal fluctuations with a maximum of approximately 0.5℃in summer.The poor consistency of the FY-3/VIRR SST in summer may be partially attributed to the bias of the OIv2.1 data in global oceans(especially the Indian Ocean)as a result of the spatially heterogeneous in situ measurements from ships,buoys,and Argo floats.Convective activities and clouds in the tropics may also influence the accuracy of the FY-3/VIRR SST retrievals.The Ni?o SST indices based on both FY-3/VIRR and OIv2.1 SST data displayed a gener-ally similar evolution,including the start and end of El Ni?o and La Ni?a events and their amplitudes,although the deviations were slightly larger when the Pacific SST anomaly was in the neutral state of the El Ni?o-Southern Oscil-lation(ENSO).The deviations varied greatly with season in the tropical Indian and Atlantic oceans,suggesting the need to perform further analyses and validation of the FY-3/VIRR SST products in these two basins.
其他文献
2021年夏季我国天气气候异常特征突出,极端天气气候事件多,东部主要多雨区在我国北方,降水的季节内变化显著,华南前汛期开始偏晚、江淮流域梅雨和华北雨季开始偏早.东亚大气环流季节内变化对降水异常的空间分布影响较大.6月,东北冷涡活动频繁,导致东北及邻近区域降水异常偏多,黑龙江、嫩江流域发生严重汛情;东北冷涡的异常活跃可能受到前期北大西洋三极子海温持续正位相的影响.7月,长江下游至内蒙古东部的经向型多雨带及河南特大暴雨,主要受到台风烟花长时间维持和北上、偏强的大陆高压和偏东偏北的西太平洋副热带高压的综合影响;
确定了湖南春雨建立的上游西南风速关键区,定义了湖南春雨监测指标,分析了湖南春雨指标的时间变化特征及春雨的空间分布特征,探讨了湖南春雨强、弱年大气环流和水汽输送的异常及前期海温异常特征.结果表明,湖南春雨发生的时段气候平均为第13~27候,不同年份开始和结束的早晚不尽相同,湖南春雨量在20世纪80年代中期以前、2014年以后偏多,20世纪80年代中期至2013年偏少,空间分布表现为自东部、南部向西部、北部逐渐递减.全省一致偏多(偏少)型可以较好地表现湖南春雨的主要空间分布型特征.全省一致型强春雨年,西太平洋
基于2018年和2019年有效观测的高分1号(GF-1)卫星影像和湖面原位观测的叶绿素a浓度数据,利用随机森林算法定量评价特征变量重要性的功能,选择有效特征波段组合,建立了基于原位自动监测数据的太湖叶绿素a浓度的遥感反演模型.结果表明:绿光波段(0.52~0.59 μm)和红光波段(0.63~0.69 μm)是遥感估算叶绿素a浓度的关键波段,与其他波段组合可以定量估算叶绿素a浓度;分季节构建太湖叶绿素a浓度估算模型效果更好,春、夏、秋、冬各季模型的决定系数R2分别达0.84、0.85、0.96和0.82;
为进一步讨论新型“上升-平漂-下降”探空数据在资料同化与数值预报中的应用效果,基于WRF(Weather Research and Forecast)模式及WRFDA(WRF data assimilation)同化系统进行同化对比试验.在对新型探空试验数据进行质量评估和稀疏化的基础上,将下降段资料与常规观测资料组合同化,并讨论其对于长江中下游地区暴雨预报质量的影响及原因.主要试验结果包括:通过与FNL资料、业务同站探空数据交叉对比验证最新试验数据准确性;使用特性层与规定层结合的方案对新型探空上升、下降段
A new globally reconstructed sea surface temperature(SST)analysis dataset developed by the China Meteorologi-cal Administration(CMA-SST),available on 2°×2° and monthly resolutions since 1900,is described and assessed in this study.The dataset has been con
基于高分辨率的土地利用/土地覆被遥感监测数据,融合下垫面信息、格点化寒露风等级和不同尺度寒露风指数,分析了 2020年我国南方双季晚稻区的寒露风特点.结果表明:2020年晚稻寒露风发生时间早,持续时间长,普遍出现轻度至重度寒露风.寒露风发生面积占稻田总面积的24.7%,为2000年以来第三高,发生轻度、中度、重度寒露风的面积比例分别为9.7%、12.8%和4.9%;湖南、江西、浙江发生面积比例超过90.0%,其余省(自治区)不足30.0%;2020年湖南、湖北、安徽、江苏发生面积比例为2000年以来最高,
The present study evaluates spatial and temporal characteristics of the Fengyun-3B(FY-3B)\'s outgoing longwave radiation(OLR)data based on NOAA OLR data and the GPCP(Global Precipitation Climatology Project)precipita-tion data over the Asian-Australian
This study evaluates the in-orbit calibration uncertainty(CU)for the microwave radiation imager(MWRI)on board the Chinese polar-orbiting meteorological satellite Fengyun-3C(FY-3C).Uncertainty analysis of the MWRI provides a direct link to the calibration
The wet bulb globe temperature(WBGT)has important implication for human health.Previous studies widely use the monthly data but rarely investigate the extreme WBGT because of data limitation.In this study,we use 6-h sta-tion data to analyze the changes in
Precipitation extremes,such as the record-breaking Meiyu characterized by frequent occurrences of rainstorms that resulted in severe flooding over the Yangtze-Huai River valley(YHRV)in June-July 2020,are always attracting considerable interest,highlightin