论文部分内容阅读
能够同时对多种属性进行训练,具有优秀推广能力的支持向量机(Support Vector Machine,简称SVM)方法是进行高精度地震参数预测的有力保障。然而,支持向量机中用于构建回归估计函数的参数最优解很难确定。针对该问题,通过建立数学模型进行参数选择研究,总结出了参数ε、C、σ2对样本预测的影响规律。在此基础上提出了求取惩罚因子C和核参数α^2的权系数公式。结合提出的参数求取公式,利用支持向量机方法,以地震属性为输入向量对渤海SZ36-1油田的砂泥岩百分比和孔隙度进行了预测。结果表明,利用该方法对储