论文部分内容阅读
为解决传统的BP学习算法因采用梯度搜索技术而具有的收敛速度慢、容易陷入局部极小等缺点,提出了一种基于多参数空间快速搜索遗传算法的网络权值优化方法.该方法采用误差均分的变尺度搜索技术来训练网络权值,将网络权值的训练转化为多参数空间的寻优问题.训练实例对比结果表明,由于采用了并行计算及变尺度搜索技术,该算法不仅收敛速度快,网络逼近精度高,而且能实现全局最优,克服了BP算法易于陷入局部极小的问题,说明了该方法的有效性.