论文部分内容阅读
针对噪声图像边缘模糊、边缘检测困难的问题,提出了一种结合分数阶微分的噪声图像非下采样contourlet变换(NSCT)域边缘检测方法。该方法首先对图像进行NSCT分解,对低频子带的轮廓进行针对性提取;其次对于边缘细节和噪声较多的各方向高频子带,利用NSCT域的多尺度积和方向分数阶微分矩阵对高频系数进行阈值去噪与信息增强;最后将NSCT域各频域和方向的尺度图像进行融合,得到完整的边缘图像。对不同类型的原始图像和噪声图像进行实验,本文方法检测到的平均连续边缘像素比分别为0.931和0.861,相比Ca