论文部分内容阅读
摘要: 介绍了地铁设计规范对地铁通风与空调系统的要求。对地铁空调系统室内外空气计算参数的确定、冷负荷构成、冷负荷计算方法及地铁通风与空调系统的构成进行了阐述。
关键词:地铁 通风与空调系统 冷负荷
Abstract: the article introduces the design code for metro subway ventilation and air conditioning system requirements. The air conditioning system of indoor and outdoor air calculation of parameters, cold load composition, cold load calculation method and the subway ventilation and air conditioning the structure of the system is discussed in this paper.
Key words: the subway ventilation and air conditioning cooling load of the system
中图分类号:U231+.3文献标识码:A文章编号:
1 地铁对通风与空调系统的要求
地铁地下线路是一座狭长的地下建筑,除各站出入口和通风道口与大气沟通以外,可以认为地铁基本上是与大气隔绝的。由于列车运行、设备运转和乘客等会散发出大量热量,使得地铁环境具有如下特点:列车运行时产生活塞效应,易干扰车站的气流组织,若不能合理利用,影响车站的负荷;列车运行过程中产生大量的热被带入车站;地层具有蓄热作用,随着运营时间的增加,地铁系统内部的温度会逐年升高;当发生火灾事故时,将导致环境恶化,不易救援。
2 空调室内外计算参数
2.1 室外计算参数
普通地面建筑室外计算参数对空调系统的设计有重要的影响,因此在确定室外计算参数时,既不应选择多年不遇的极端值,也不应任意降低空调系统对服务对象的保证率。GB 50019-2003《采暖通风与空气调节设计规范》中规定选择历年平均不保证50h的干球温度作为夏季空调室外空气计算温度。此干球温度一般出现在12:00—14:00,與地面建筑空调最大负荷出现的时段基本一致。在进行地铁环境控制系统的设计时,要掌握当地最高月平均温度、列车编组和运行间隔以及乘客流量对地铁空调系统室外计算参数的影响。随日客流量的变化,地铁运行形成早晚两个高峰期,在晚高峰期地铁内散热达到最大。因此,采用近20年夏季地铁晚高峰负荷时平均每年不保证30h的干球温度。若采用普通地面建筑的计算温度,则不能满足地铁晚高峰负荷要求。
2.2 室内计算参数
地铁车站的空调系统属于舒适性空调系统,一般情况下,乘客在车站站厅层、站台层只作短暂停留,约3~5min,下车出站约3min。而在地面上,多数人约80%以上的时间停留在一定的建筑环境内。因此,地铁车站的空调设计标准与地面建筑舒适性空调不同。在确定地铁车站环境设计标准时,考虑到乘客在地铁车站只是通过或短暂停留,为了节约能源,地铁车站仅为乘客提供一个过渡性的热舒适环境。因此,应合理确定各个环节的温差范围。较大的温差会使人体的调节机能不能很快适应,产生不舒适感,并增大了空调负荷;而太小的温差又不能为乘客提供舒适的乘车环境,失去了环境控制的本来意义。
3 空调冷负荷构成及计算
3.1 空调冷负荷构成
普通地面建筑内空调冷负荷主要包括围护结构传热形成冷负荷、人体散热湿形成的冷负荷、灯光照明散热形成的冷负荷、设备散热形成的冷负荷 。地铁环境空调负荷与普通地面建筑不同,地铁列车运行时消耗的能量最终都以热的形式分布在地铁环境中,成为影响地铁环境的动态负荷。另外,地铁处于地下,不受太阳辐射的影响,除了计算冷负荷时必须考虑室外新风的影响之外,在计算地铁车站自身的空调冷负荷时基本可忽略室外环境的影响。地铁车站的空调冷负荷主要考虑以下几部分 :列车运行散热负荷、列车风负荷、乘客负荷、送入的室外空气负荷、车站照明负荷、空调等设备负荷及由壁面吸放热所增减的负荷。
3.2 空调冷负荷的计算
3.2.1 空调冷负荷概算指标
在实际工程设计中,有时要求对建筑物空调冷负荷进行预先估算,以便估算设备容量及系统造价。地面建筑空调冷负荷概算指标根据建筑类型而异,一般建筑的空调冷负荷概算指标为100~200 W/m2 ;对于大型建筑,如体育馆、影剧院、室内游泳馆等为250~350 W/m2。地铁系统还没有统一的空调冷负荷概算指标,地铁热环境受列车运动影响,列车进站时带入的活塞风对站台空调环境造成很大的影响,对此还需要进一步的研究,希望能找出不同地区的地铁空调冷负荷概算指标。
3.2.2 空调冷负荷计算方法
目前,在我国暖通空调工程中,地面建筑常采用冷负荷系数法计算空调冷负荷,冷负荷系数法是建立在传递函数法基础上,是便于在工程上进行手算的一种简化计算方法。现行设计中,多采用空调冷负荷概算指标进行估算或采用暖通空调设计软件进行计算。
4 通风及空调系统
地铁的环境控制系统分为隧道通风系统与车站通风空调系统。隧道通风系统分为区间隧道通风系统和车站隧道通风系统。车站通风空调系统分为车站公共区通风空调系统、车站设备管理用房通风空调系统、车站空调水系统。
4.1 隧道通风系统
列车在隧道内行驶时消耗的能量转变为热量散发在隧道中,当行车密度很大时可使隧道内的温度很高。列车辅助设备及隧道内设备的运行等都会使隧道内的空气温度升高。为保持隧道内正常的卫生条件,需要对隧道进行通风以降低隧道内温度,并向隧道内送入新鲜空气以满足隧道工作人员及车上乘客的生理需要。GB 50157-2003《地铁设计规范》规定,隧道正常通风采用活塞通风,当活塞通风不能满足排除余热要求或布置活塞风道有困难时,应设置机械通风系统。
隧道通风一般设置轨顶排风和轨底排风。列车产生的大部分热量都分布在站台层,因此设置轨顶排风和轨底排风,可以有效排除列车进站时带入的热量,从而降低车站空调冷负荷。
4.2 车站通风空调系统
地铁的通风与空调系统宜优先采用通风方式。当夏季最热月的平均温度超过25℃ ,且地铁高峰时间内每小时的行车对数和每列车车辆数的乘积大于180时,车站采用空调系统。车站公共区的通风及空调系统根据车站热源构成特点,合理布置车站送排风系统,有效排除余热和余湿,减少活塞风对站台的扰动,为乘客提供一个舒适的候车环境。车站的环境控制系统分为开式系统、闭式系统、屏蔽门系统。开式系统车站一般采用横向送排风,也可将车站与区间隧道连成一体进行纵向通风;闭式系统通常将送风管沿车站长度方向布置在站台两侧,风口朝下均匀送风,在站台和轨顶设置排风系统;屏蔽门系统中车站成为独立的空调场所,一般将送风管沿车站长度方向布置在站台和站厅上方两侧,风口朝下均匀送风,回风管设置在车站中间上部,也可采用在车站两端集中回风的形式。车站各类用房应根据其使用要求设置通风系统,必要时可设置空调系统。另外,地下车站通风空调系统的运行还需要沿地铁线路设置风亭、风井,提供足够的新风,将空调回风排到外界。
5 结论
地铁的环境控制系统是暖通空调在特殊领域中的应用,地铁环境控制系统具有自身的特点,因此对地铁环境控制系统设计要遵循其特有的规律。地铁通风空调系统运行能耗是地铁总能耗的重要组成部分,合理设计地铁通风空调系统及优化运行,是地铁节能运行的关键。
参考文献:
[1] GB 50157-2003,地铁设计规范[s]
[2] 陆亚俊.暖通空调[M].北京:中国建筑工业出版社,2003
关键词:地铁 通风与空调系统 冷负荷
Abstract: the article introduces the design code for metro subway ventilation and air conditioning system requirements. The air conditioning system of indoor and outdoor air calculation of parameters, cold load composition, cold load calculation method and the subway ventilation and air conditioning the structure of the system is discussed in this paper.
Key words: the subway ventilation and air conditioning cooling load of the system
中图分类号:U231+.3文献标识码:A文章编号:
1 地铁对通风与空调系统的要求
地铁地下线路是一座狭长的地下建筑,除各站出入口和通风道口与大气沟通以外,可以认为地铁基本上是与大气隔绝的。由于列车运行、设备运转和乘客等会散发出大量热量,使得地铁环境具有如下特点:列车运行时产生活塞效应,易干扰车站的气流组织,若不能合理利用,影响车站的负荷;列车运行过程中产生大量的热被带入车站;地层具有蓄热作用,随着运营时间的增加,地铁系统内部的温度会逐年升高;当发生火灾事故时,将导致环境恶化,不易救援。
2 空调室内外计算参数
2.1 室外计算参数
普通地面建筑室外计算参数对空调系统的设计有重要的影响,因此在确定室外计算参数时,既不应选择多年不遇的极端值,也不应任意降低空调系统对服务对象的保证率。GB 50019-2003《采暖通风与空气调节设计规范》中规定选择历年平均不保证50h的干球温度作为夏季空调室外空气计算温度。此干球温度一般出现在12:00—14:00,與地面建筑空调最大负荷出现的时段基本一致。在进行地铁环境控制系统的设计时,要掌握当地最高月平均温度、列车编组和运行间隔以及乘客流量对地铁空调系统室外计算参数的影响。随日客流量的变化,地铁运行形成早晚两个高峰期,在晚高峰期地铁内散热达到最大。因此,采用近20年夏季地铁晚高峰负荷时平均每年不保证30h的干球温度。若采用普通地面建筑的计算温度,则不能满足地铁晚高峰负荷要求。
2.2 室内计算参数
地铁车站的空调系统属于舒适性空调系统,一般情况下,乘客在车站站厅层、站台层只作短暂停留,约3~5min,下车出站约3min。而在地面上,多数人约80%以上的时间停留在一定的建筑环境内。因此,地铁车站的空调设计标准与地面建筑舒适性空调不同。在确定地铁车站环境设计标准时,考虑到乘客在地铁车站只是通过或短暂停留,为了节约能源,地铁车站仅为乘客提供一个过渡性的热舒适环境。因此,应合理确定各个环节的温差范围。较大的温差会使人体的调节机能不能很快适应,产生不舒适感,并增大了空调负荷;而太小的温差又不能为乘客提供舒适的乘车环境,失去了环境控制的本来意义。
3 空调冷负荷构成及计算
3.1 空调冷负荷构成
普通地面建筑内空调冷负荷主要包括围护结构传热形成冷负荷、人体散热湿形成的冷负荷、灯光照明散热形成的冷负荷、设备散热形成的冷负荷 。地铁环境空调负荷与普通地面建筑不同,地铁列车运行时消耗的能量最终都以热的形式分布在地铁环境中,成为影响地铁环境的动态负荷。另外,地铁处于地下,不受太阳辐射的影响,除了计算冷负荷时必须考虑室外新风的影响之外,在计算地铁车站自身的空调冷负荷时基本可忽略室外环境的影响。地铁车站的空调冷负荷主要考虑以下几部分 :列车运行散热负荷、列车风负荷、乘客负荷、送入的室外空气负荷、车站照明负荷、空调等设备负荷及由壁面吸放热所增减的负荷。
3.2 空调冷负荷的计算
3.2.1 空调冷负荷概算指标
在实际工程设计中,有时要求对建筑物空调冷负荷进行预先估算,以便估算设备容量及系统造价。地面建筑空调冷负荷概算指标根据建筑类型而异,一般建筑的空调冷负荷概算指标为100~200 W/m2 ;对于大型建筑,如体育馆、影剧院、室内游泳馆等为250~350 W/m2。地铁系统还没有统一的空调冷负荷概算指标,地铁热环境受列车运动影响,列车进站时带入的活塞风对站台空调环境造成很大的影响,对此还需要进一步的研究,希望能找出不同地区的地铁空调冷负荷概算指标。
3.2.2 空调冷负荷计算方法
目前,在我国暖通空调工程中,地面建筑常采用冷负荷系数法计算空调冷负荷,冷负荷系数法是建立在传递函数法基础上,是便于在工程上进行手算的一种简化计算方法。现行设计中,多采用空调冷负荷概算指标进行估算或采用暖通空调设计软件进行计算。
4 通风及空调系统
地铁的环境控制系统分为隧道通风系统与车站通风空调系统。隧道通风系统分为区间隧道通风系统和车站隧道通风系统。车站通风空调系统分为车站公共区通风空调系统、车站设备管理用房通风空调系统、车站空调水系统。
4.1 隧道通风系统
列车在隧道内行驶时消耗的能量转变为热量散发在隧道中,当行车密度很大时可使隧道内的温度很高。列车辅助设备及隧道内设备的运行等都会使隧道内的空气温度升高。为保持隧道内正常的卫生条件,需要对隧道进行通风以降低隧道内温度,并向隧道内送入新鲜空气以满足隧道工作人员及车上乘客的生理需要。GB 50157-2003《地铁设计规范》规定,隧道正常通风采用活塞通风,当活塞通风不能满足排除余热要求或布置活塞风道有困难时,应设置机械通风系统。
隧道通风一般设置轨顶排风和轨底排风。列车产生的大部分热量都分布在站台层,因此设置轨顶排风和轨底排风,可以有效排除列车进站时带入的热量,从而降低车站空调冷负荷。
4.2 车站通风空调系统
地铁的通风与空调系统宜优先采用通风方式。当夏季最热月的平均温度超过25℃ ,且地铁高峰时间内每小时的行车对数和每列车车辆数的乘积大于180时,车站采用空调系统。车站公共区的通风及空调系统根据车站热源构成特点,合理布置车站送排风系统,有效排除余热和余湿,减少活塞风对站台的扰动,为乘客提供一个舒适的候车环境。车站的环境控制系统分为开式系统、闭式系统、屏蔽门系统。开式系统车站一般采用横向送排风,也可将车站与区间隧道连成一体进行纵向通风;闭式系统通常将送风管沿车站长度方向布置在站台两侧,风口朝下均匀送风,在站台和轨顶设置排风系统;屏蔽门系统中车站成为独立的空调场所,一般将送风管沿车站长度方向布置在站台和站厅上方两侧,风口朝下均匀送风,回风管设置在车站中间上部,也可采用在车站两端集中回风的形式。车站各类用房应根据其使用要求设置通风系统,必要时可设置空调系统。另外,地下车站通风空调系统的运行还需要沿地铁线路设置风亭、风井,提供足够的新风,将空调回风排到外界。
5 结论
地铁的环境控制系统是暖通空调在特殊领域中的应用,地铁环境控制系统具有自身的特点,因此对地铁环境控制系统设计要遵循其特有的规律。地铁通风空调系统运行能耗是地铁总能耗的重要组成部分,合理设计地铁通风空调系统及优化运行,是地铁节能运行的关键。
参考文献:
[1] GB 50157-2003,地铁设计规范[s]
[2] 陆亚俊.暖通空调[M].北京:中国建筑工业出版社,2003