论文部分内容阅读
为了解决多属性数据分类问题,提出了一种基于模糊优选模型与聚类分析的分类方法(FO-CA).首先由模糊优选模型得到有序综合指标数据集,其中在权重阶段提出了距离差异度并以此为依据构建了一种组合主客观权重的赋权方法;然后采用聚类分析将有序综合指标数据集聚类为几个簇进而分类;最后选取UCI中的Iris、Wine和Ruspini 3个数据集进行仿真实验.实验结果表明,该分类方法相比模糊优选方法及K-Means算法能获得更好的分类结果,对决策者有一定的参考价值.