论文部分内容阅读
针对基于分块的图像融合中分块裂痕和实际融合特征的不确定等问题,提出一种结合支持向量机(SVM)和模糊神经网络(FNN)的多聚焦图像融合新方法。首先,通过模糊C均值聚类(FCM)和SVM获得FNN的网络参数,利用构建的模糊神经网络,将分割的图像块分成清晰区域、模糊区域和过渡区域三类;然后用模糊神经网络的反模糊化输出作为权值因子对三类区域进行加权融合,输出融合的多聚焦图像。最后,通过均方根误差、平均绝对误差和峰值信噪比等指标对多种融合算法进行融合质量评价。实验结果表明,提出的融合算法鲁棒性和计算性能较好