评估基于极端梯度上升(XGBoost)算法的联合诊断模型对胃神经内分泌肿瘤(NENs)病理分级的诊断效能。
方法以郑州大学第一附属医院2012年8月至2019年12月收治的81例胃NENs患者为对象,收集其临床资料和CT影像学资料。分析CT影像的病灶个数、肿瘤部位、形态、淋巴结转移状态、肿瘤最厚径、最长径和动静脉期CT值等特征;采用ITK-SNAP软件和Python 2.1.0 Pyradiomics软件对CT影像进行影像组学分析预处理并从分割图像中提取组学特征;采用XGboost算法分别建立CT影像模型、动脉期组学模型、静脉期组学模型和联合诊断模型;采用准确度、均方误差(MSE)和平均绝对误差(MAE)评价以上模型的诊断性能。
结果NENs患者年龄为28.0~78.0(58.6±10.7)岁,其中男性56例,占69.1%。胃NENs病理分级G1/G2级和G3级患者病灶个数、肿瘤部位、形态、淋巴结转移状态、肿瘤最厚径和最长径的差异均有统计学意义(均P<0.05),动(静)脉期CT值差异无统计学意义(均P>0.05)。联合诊断模型中的特征分别为A_logarithm_glcm_Imc1、P_squareroot_glcm_MaximumProbability、肿瘤最厚径、最长径、A_wavelet-HHL_glrlm_GrayLevelNonUniformity和P_wavelet-LLL_ngtdm_Contrast。CT影像模型、动脉期组学模型、静脉期组学模型和联合诊断模型的准确度分别为81.8%、86.0%、87.8%和91.0%;MSE分别为539.41、490.08、429.99和371.92;MAE分别为16.72、15.25、14.23和12.33。联合诊断模型的MAE值小于CT影像模型和动脉期组学模型(P值分别为<0.001和0.004),而与静脉期组学模型的MAE值差异无统计学意义(P=0.111)。
结论基于XGBoost算法的联合诊断模型对胃神经内分泌肿瘤病理分级具有良好的诊断效能。