论文部分内容阅读
为了能够更好地对非独立同分布的多尺度分类型数据集进行研究,基于无监督耦合度量相似性方法,提出针对非独立同分布的分类属性型数据集的多尺度聚类挖掘算法。首先,对基准尺度数据集进行基于耦合度量的基准尺度聚类;其次,提出基于单链的尺度上推和基于Lanczos核的尺度下推尺度转换算法;最后,利用公用数据集以及H省真实数据集进行实验验证。将耦合度量相似性(Couple metric similarity,CMS)、逆发生频率(Inverse occurrence frequency,IOF)、汉明距离(Hamming