论文部分内容阅读
为了利用径向基函数(RBF)神经网络对混沌序列进行精确和快速的在线预测,提出一种在线构造变结构RBF神经网络的序贯学习算法. 该算法建立实时更新的滑动数据窗口,通过学习窗口内的数据对隐节点进行增加和删除,动态确定RBF神经网络隐节点的数目及中心位置,并对隐层至输出层的连接权值进行在线调整. 该算法具有调节参数少、学习速度快以及所得网络结构精简等特点. 将该网络用于Mackey-Glass混沌时间序列的在线预测实验,结果验证该算法对该混沌序列具有良好的在线动态辨识和预测性能.