论文部分内容阅读
近几年,垃圾博客过滤成为国际上新的热点研究领域。现有的过滤算法大多基于词频特征分类,特征冗余并缺乏关联性。为了解决此问题,提出一种基于组合特征的动态垃圾博客过滤算法(CFDSD),该算法采用作者属性和自相似特征来解决特征冗余和关联性低的问题,并应用贝叶斯分类算法优化词频特征分类。实验表明,该算法能适应博客随时间变化而动态更新的特点,同时提高了过滤效率。