论文部分内容阅读
摘要:数学作为一种文化,其主要的作用体现在对人生的意义、对数学学习的发展和对公民素养的影响上。数学文化直接影响着学生的数学学习行为、数学学习态度、价值观的发展。
关键词:数学文化;数学教学;高中
中图分类号:G4 文献标识码:A 文章编号:(2021)-13-145
引言;由于面临升学压力,传统的高中数学教学较为重视追求数学分数,而忽视了数学文化教育。数学文化是人类文化的重要组成部分。在高中数学教学中引入数学文化,能够发展学生的数学学科核心素养,培养学生的数学精神。教师将数学文化引入高中数学教学的途径包括:在教学中渗透数学思想方法,在每章引言中渗透数学文化,在数学建模中渗透数学文化。
2数学文化在高中数学教学中的教育价值
2.1发展学生的数学学科核心素养
数学学科核心素养是数学课程目标的集中体现,是具有数学基本特征的思维品质、关键能力以及情感、态度与价值观的综合体现。[1]传统的数学课程,在教学与评价上过于强调选拔和甄别功能,而忽视了数学文化等其他方面,不利于数学学科核心素养的培养。教师在教学中渗透数学家为了发现数学真理而付出艰辛和汗水的事迹,展示数学知识的背景、数学定理公式的发展过程以及数学家崇高的情操,可以让学生觉得数学高峰并不是遥不可及的,数学定理的发现也不只是数学家的任务,应激励学生勇攀科学的高峰,树立正确的学习态度,开阔眼界,体会数学的价值,从而发展学生的数学学科核心素养。
2.2培养学生的数学精神
传统教学重在传授知识,培养学生的应试能力,而《新课标》认为更重要的是让学生了解数学的严谨求实特点,体会数学家刻苦钻研的品质,激发学生不怕困难、勇攀科学高峰的热情,从而促进学生数学精神的发展。数学思想、方法和数学家的探索精神都是数学文化的基本内容,而数学精神正是数学文化价值的精髓。有调查表明,若干年后,学生可能会遗忘自己在学生时代所学习的数学知识,但是无论学生从事什么样的工作,数学思想方法、数学精神却能够深深铭刻在学生的心中,使他们受益一生。这种数学理性精神是西方文明的核心,它驱使人类的思维得到不断的完善,现代自然科学和社会科学都是建立在理性思维基础上的。因此,将数学文化引入高中数学教学的最终目的就是培养学生的数学精神。
3将数学文化引入高中数学教学的策略
3.1在教学中渗透数学思想方法
《新课标》总结了一些高中常见的数学思想方法,如化归思想、归纳与类比思想、数形结合思想、方程思想、函数思想、公理化思想等。它们是从具体的数学内容中抽象出来的,具有高度的抽象性、普适性。也正因如此,才使得数学在自然科学和社会科学中具有广泛的应用性。达芬奇就说过:“在科学中,凡是用不上数学的地方,凡是和数学没有联系的地方,都是不可靠的;数学是一切科学的基础。”教师在教学中不能仅仅满足在“解题”水平,而要把具体的知识上升到数学思想和文化的高度,培养学生的理性精神。如在“导数及其应用”这一章教学中,大部分教师由于教学时间的限制,往往只向学生讲述求导的法则和导数的解题应用,这就使得学生对导数这一内容感到抽象、晦涩难懂。而如果教师向学生介绍一些极限思想,就可以拓展学生的思维,从而理解导数是我们研究函数的良好工具。在“推理与证明”部分可以介绍一些数学知识背景,如欧几里得编写的散发理性光辉的《几何原本》、牛顿第三定律的数学应用,使学生体会公理化思想。
3.2在每章引言中渗透数学文化
在传统教学中,教师往往为了节约时间而忽视了每一章节的数学引言。其实每一章的引言不仅包括了该章的知识内容和结构,还有本章内容的知识背景以及数学知识产生和发展的原因。如在“复数”一章教学中,教师可以向学生介绍数系的每一次扩展都是产生于实践的需要,尤其要讲述希伯索斯坚信无理数的存在而葬身大海的故事。学生由此了解到每一次数学真理的发现都不是一帆风顺的,而是历经曲折的。这样不仅向学生揭示了复数产生的知识背景,学生也从中接受了历史唯物主义教育,激发了学生学习复数的积极性。如在教学“概率与统计”这一部分内容时,教师可以告诉学生概率起源于赌博者的请求。早在1654年,有一个赌徒向当时的数学家帕斯卡提出一个问题:两个赌徒相约赌若干局,谁先赢m局就算赢,全部赌本就归谁。但是当其中一个人赢了a局,另一个人赢了b局的时候,赌博终止。试问赌本应该如何分发才算合理?三年后,荷兰数学家惠根思为解决这一问题,编写了世界上最早的概率论著作《论机会游戏的计算》。尽管概率的起源有点“不光彩”,但是在引言中介绍这样一段背景知识,可以让学生知道数学来源于生活,并为我们的生产生活服务。
3.3在数学建模中渗透数学文化
数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型以解决问题的过程。教师在日常教学中除了要将数学文化引入数学知识教学中,还要结合数学建模,培养学生创造性地运用知识和合作学习的能力。这种以数学文化的视域来进行数学建模,有利于转变学生的学习方式,使其由传统的接受式学习变为自主学习、合作学习和探究学习。例如,我们在购买菠萝时都需要商家削皮,对于削皮的方式,有些人是横着削,有些人是竖着削,而部分商家都是选择斜着去削(削成螺旋形状)。此时,教師要求学生从数学的角度分析为什么大部分人都倾向于斜着去削,可以采用小组合作的形式进行调研分析、查阅资料。通过生活中很常见的例子,能够让学生进行数学分析和建模,体会“数学来源于生活,数学服务于生活”的理念,从而产生文化共鸣,体会数学文化的深刻魅力。
4结语
数学文化与数学知识是相辅相成、互相影响的,只要有数学就一定有数学文化。教师在进行教学时,从数学文化视域的角度审视高中数学教学,并将数学文化融入教学中,就会使数学变得生动亲切,学生也就会更加愿意学习数学。
参考文献
[1]中华人民共和国教育部.普通高中数学课程标准(2017年版)[M].北京:人民教育出版社,2017.
[2]爱德华·泰勒.原始文化[M].上海:上海文艺出版社,1992:1.
[3]课程教材研究所与数学课程教材研究开发中心.数学文化[M].北京:人民教育出版社,2003:31-32.
关键词:数学文化;数学教学;高中
中图分类号:G4 文献标识码:A 文章编号:(2021)-13-145
引言;由于面临升学压力,传统的高中数学教学较为重视追求数学分数,而忽视了数学文化教育。数学文化是人类文化的重要组成部分。在高中数学教学中引入数学文化,能够发展学生的数学学科核心素养,培养学生的数学精神。教师将数学文化引入高中数学教学的途径包括:在教学中渗透数学思想方法,在每章引言中渗透数学文化,在数学建模中渗透数学文化。
2数学文化在高中数学教学中的教育价值
2.1发展学生的数学学科核心素养
数学学科核心素养是数学课程目标的集中体现,是具有数学基本特征的思维品质、关键能力以及情感、态度与价值观的综合体现。[1]传统的数学课程,在教学与评价上过于强调选拔和甄别功能,而忽视了数学文化等其他方面,不利于数学学科核心素养的培养。教师在教学中渗透数学家为了发现数学真理而付出艰辛和汗水的事迹,展示数学知识的背景、数学定理公式的发展过程以及数学家崇高的情操,可以让学生觉得数学高峰并不是遥不可及的,数学定理的发现也不只是数学家的任务,应激励学生勇攀科学的高峰,树立正确的学习态度,开阔眼界,体会数学的价值,从而发展学生的数学学科核心素养。
2.2培养学生的数学精神
传统教学重在传授知识,培养学生的应试能力,而《新课标》认为更重要的是让学生了解数学的严谨求实特点,体会数学家刻苦钻研的品质,激发学生不怕困难、勇攀科学高峰的热情,从而促进学生数学精神的发展。数学思想、方法和数学家的探索精神都是数学文化的基本内容,而数学精神正是数学文化价值的精髓。有调查表明,若干年后,学生可能会遗忘自己在学生时代所学习的数学知识,但是无论学生从事什么样的工作,数学思想方法、数学精神却能够深深铭刻在学生的心中,使他们受益一生。这种数学理性精神是西方文明的核心,它驱使人类的思维得到不断的完善,现代自然科学和社会科学都是建立在理性思维基础上的。因此,将数学文化引入高中数学教学的最终目的就是培养学生的数学精神。
3将数学文化引入高中数学教学的策略
3.1在教学中渗透数学思想方法
《新课标》总结了一些高中常见的数学思想方法,如化归思想、归纳与类比思想、数形结合思想、方程思想、函数思想、公理化思想等。它们是从具体的数学内容中抽象出来的,具有高度的抽象性、普适性。也正因如此,才使得数学在自然科学和社会科学中具有广泛的应用性。达芬奇就说过:“在科学中,凡是用不上数学的地方,凡是和数学没有联系的地方,都是不可靠的;数学是一切科学的基础。”教师在教学中不能仅仅满足在“解题”水平,而要把具体的知识上升到数学思想和文化的高度,培养学生的理性精神。如在“导数及其应用”这一章教学中,大部分教师由于教学时间的限制,往往只向学生讲述求导的法则和导数的解题应用,这就使得学生对导数这一内容感到抽象、晦涩难懂。而如果教师向学生介绍一些极限思想,就可以拓展学生的思维,从而理解导数是我们研究函数的良好工具。在“推理与证明”部分可以介绍一些数学知识背景,如欧几里得编写的散发理性光辉的《几何原本》、牛顿第三定律的数学应用,使学生体会公理化思想。
3.2在每章引言中渗透数学文化
在传统教学中,教师往往为了节约时间而忽视了每一章节的数学引言。其实每一章的引言不仅包括了该章的知识内容和结构,还有本章内容的知识背景以及数学知识产生和发展的原因。如在“复数”一章教学中,教师可以向学生介绍数系的每一次扩展都是产生于实践的需要,尤其要讲述希伯索斯坚信无理数的存在而葬身大海的故事。学生由此了解到每一次数学真理的发现都不是一帆风顺的,而是历经曲折的。这样不仅向学生揭示了复数产生的知识背景,学生也从中接受了历史唯物主义教育,激发了学生学习复数的积极性。如在教学“概率与统计”这一部分内容时,教师可以告诉学生概率起源于赌博者的请求。早在1654年,有一个赌徒向当时的数学家帕斯卡提出一个问题:两个赌徒相约赌若干局,谁先赢m局就算赢,全部赌本就归谁。但是当其中一个人赢了a局,另一个人赢了b局的时候,赌博终止。试问赌本应该如何分发才算合理?三年后,荷兰数学家惠根思为解决这一问题,编写了世界上最早的概率论著作《论机会游戏的计算》。尽管概率的起源有点“不光彩”,但是在引言中介绍这样一段背景知识,可以让学生知道数学来源于生活,并为我们的生产生活服务。
3.3在数学建模中渗透数学文化
数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型以解决问题的过程。教师在日常教学中除了要将数学文化引入数学知识教学中,还要结合数学建模,培养学生创造性地运用知识和合作学习的能力。这种以数学文化的视域来进行数学建模,有利于转变学生的学习方式,使其由传统的接受式学习变为自主学习、合作学习和探究学习。例如,我们在购买菠萝时都需要商家削皮,对于削皮的方式,有些人是横着削,有些人是竖着削,而部分商家都是选择斜着去削(削成螺旋形状)。此时,教師要求学生从数学的角度分析为什么大部分人都倾向于斜着去削,可以采用小组合作的形式进行调研分析、查阅资料。通过生活中很常见的例子,能够让学生进行数学分析和建模,体会“数学来源于生活,数学服务于生活”的理念,从而产生文化共鸣,体会数学文化的深刻魅力。
4结语
数学文化与数学知识是相辅相成、互相影响的,只要有数学就一定有数学文化。教师在进行教学时,从数学文化视域的角度审视高中数学教学,并将数学文化融入教学中,就会使数学变得生动亲切,学生也就会更加愿意学习数学。
参考文献
[1]中华人民共和国教育部.普通高中数学课程标准(2017年版)[M].北京:人民教育出版社,2017.
[2]爱德华·泰勒.原始文化[M].上海:上海文艺出版社,1992:1.
[3]课程教材研究所与数学课程教材研究开发中心.数学文化[M].北京:人民教育出版社,2003:31-32.