论文部分内容阅读
研究了对称α稳定分布(SαS)冲击杂波下的多输入多输出(MI MO)雷达目标波达方向(DOA)估计问题,分别提出基于分数低阶最小方差无畸变响应(Fr MVDR)的MI MO雷达DOA估计算法和无穷范数归一化最小方差无畸变响应(Inf-MVDR)算法。Fr MVDR算法,首先进行冲击杂波特征指数的估计,然后使MI MO雷达接收阵列的分数低阶输出功率最小,实现MI MO雷达的DOA估计。为了避免Fr MVDR算法对杂波特征指数估计,提出Inf-MVDR算法,首先用无穷范数对接收信号进行归一化处理,使归一化后的阵列输出功率有界,继而采用传统MVDR算法进行DOA估计。计算机仿真验证了上述两种算法的有效性;同时仿真结果还表明在冲击杂波下,MI MO雷达的空间分集特性可显著提高DOA估计的精度。
The DOA estimation of multiple input multiple output (MI MO) radar under symmetrical α-stable distribution (SαS) impulsive clutter is studied. MI (FrMVDR) is proposed based on fractional lower order minimum variance distortionless response MO radar DOA estimation algorithm and infinite norm normalized minimum variance distortionless response (Inf-MVDR) algorithm. Fr MVDR algorithm, the index of impulsive clutter is first estimated, and then the MI MO radar receiving array has the lowest fractional order output power to realize DOA estimation of MI MO radar. In order to avoid Fr MVDR algorithm from estimating clutter characteristic index, an Inf-MVDR algorithm is proposed. Firstly, the received signal is normalized by infinity norm to make the output power of the normalized array bounded, and then the traditional MVDR algorithm is used DOA estimation. Computer simulations verify the validity of the above two algorithms. Simulations also show that the spatial diversity of MI MO radar can significantly improve the accuracy of DOA estimation under impulsive clutter.