论文部分内容阅读
在《星球大战》《终结者》《攻壳机动队》等科幻电影中,人工智能专家是人类顶尖智慧的化身。因为触不可及,所以缺乏真实感。
然而,近年来,随着各国科技企业纷纷加紧部署人工智能,人工智能已经从几年前还是一个比较学术的科学,演变成相对产业化的高科技行业。越来越多的顶尖人才加入到这个如火如荼的“风口”。
人工智能专家的日常是怎样的?他们的工作场景真的那么高冷吗?这些最聪明的脑袋具备哪些看家本领?又有哪些杰作?
机器的“启蒙老师”
美颜相机中萌萌哒的兔耳朵动态表情包、在线开通基金账户、实时清理互联网中不健康的违法违规图像、远程抄录家里的水电煤三表……“这些我们再熟悉不过的日常,其实都是人工智能专家的‘杰作’。”上海七牛人工智能实验室创办人和负责人彭垚说。
走进由他创办的实验室,浓浓的“极客”气息扑面而来。这个实验室有个奇特的名字——“Ataraxia人工智能实验室”。“Ataraxia是古希腊的一种哲学思想,该哲学流派认为世界的知识和理论都是不完善的,只有通过不断学习才能达到更高的境界。人工智能就是一种机器需要不断学习和认知才能到达的境界。”彭垚说。
除了响亮的名字,实验室的墙壁上还挂满了蓝底科幻海报,上面写着“AI Civilization(人工智能文明)”;区别于到处都是瓶瓶罐罐的传统实验室,人工智能实验室遍布一排排计算机,屏幕上跳动着一行行代码、数据;变形金刚式的中小型机器人错落有致地矗立在办公桌上;一张张年轻的面孔熟练而有节奏地敲打着键盘,有的是算法工程师,有的是数据科学家,还有的是数据标识员……尽管从事的具体工作各不相同,但他们都有一个共同的称谓——“人工智能专家”。
“人工智能专家,可以简单理解为机器的‘启蒙老师’。”彭垚说,算法工程师先负责搭出一个最初步的算法框架,然后,数据科学家再把合适的数据装入算法框架里,通过优化、搭建出第一版机器模型。随后,数据标识员通过给图像、文字等数据做标记,为机器编写出一本附有正确答案的“教科书”,手把手教机器模型如何学习处理不同类别的信息。
在人工智能专家的启蒙和教导下,机器模型经过几天或者一周的学习后,就可以自主进行深度学习了。“当机器模型学习的准确率达到及格线,就可以开发成产品、投入试运行,然后一边运行、一邊继续学习。一两个月后,机器模型的准确率就会有‘脱胎换骨’的进步。”彭垚说。
用算法解决各行各业的“痛点”
“人工智能是计算机科学的一支,它的起始是算法。怎样把数据转化成有效的信息,进而解决各行各业的痛点,辅助其做决策是人工智能专家的愿景。”彭垚说,与长期从事某一个具体行业的上班族不同,人工智能专家需要在各行各业自如转换。
算法模型是最基础的工具,这些工具只有跟不同行业、不同用户的需求结合起来,才会有“用武之地”。“好的人工智能专家需要不断学习不同行业的知识,了解各行业的运行规律、发现他们的痛点,进而有针对性地写算法、建模型、做产品。”彭垚说。
例如,人工智能算法模型+娱乐媒体行业,就有了“智能鉴黄师”。对于直播、短视频平台来说,他们的一大痛点是如何实时清理平台上不健康的违法违规图像。“以往,一些平台需要雇佣百余名工人,24小时值班,挑出不合格的照片,现在采用机器深度学习平台,这些企业只需要雇佣几十个人,不仅清理的准确率更高,而且工作强度也减轻了,只要对机器模型的结果进行复查就可以了。”彭垚说。
人工智能算法模型+能源消费,催生了“智能抄表员”。通过图像识别和记录每户家庭每天的用气量,计算机能够精确预估当地燃气公司每天需要购买多少燃气,避免空烧燃气造成浪费。七牛服务的一家燃气公司,此前每年需要空烧掉价值约90亿元的燃气,采用了人工智能图像识别深度学习平台后,“智能抄表员”帮助公司减少了20%左右的能源浪费。
除此之外,人工智能专家开发的产品还能用于识别金融票据文字信息,提高财务处理的效率;搜集图像大数据信息,服务特种安全行业。“对于繁重、枯燥、高重复、不适合人类的工作来说,人工智能专家开发出来的产品是人力的完美替代。”彭垚说。
“终结者”还是“创造者”
人工智能的发展速度实在太快,以至于它的研发者都感到猝不及防。日前,美国社交媒体脸书公司创始人马克·扎克伯格与美国特斯拉公司首席执行官埃隆·马斯克就进行了一场激辩,前者对人工智能持乐观态度,而后者称其为人类文明的威胁。那么,人工智能专家这个新行当到底是其他行业从业人员的“终结者”,还是新行业的“创造者”?
“我们不希望取代其他职业,而是希望革新陈旧的生产力和生产方式,促进既有行业的从业人员学习更多先进知识和技能,改善整个团队的运行模式和工作效率。”彭垚说。
马车夫、打字员这些人类还有记忆的工作,今天已经几乎没有了,取代它们的是汽车驾驶员、电脑和新的工作。在不远的将来,人类必将生活在一个“充满了人工智能的世界”,很多行业都会从人提供服务转变为机器人提供服务。“人类要学会在这样一个不断演进、不断进步的社会中生存,具备非常强的适应能力和学习能力。这样,我们就不会害怕社会的变化。”彭垚说。
然而,近年来,随着各国科技企业纷纷加紧部署人工智能,人工智能已经从几年前还是一个比较学术的科学,演变成相对产业化的高科技行业。越来越多的顶尖人才加入到这个如火如荼的“风口”。
人工智能专家的日常是怎样的?他们的工作场景真的那么高冷吗?这些最聪明的脑袋具备哪些看家本领?又有哪些杰作?
机器的“启蒙老师”
美颜相机中萌萌哒的兔耳朵动态表情包、在线开通基金账户、实时清理互联网中不健康的违法违规图像、远程抄录家里的水电煤三表……“这些我们再熟悉不过的日常,其实都是人工智能专家的‘杰作’。”上海七牛人工智能实验室创办人和负责人彭垚说。
走进由他创办的实验室,浓浓的“极客”气息扑面而来。这个实验室有个奇特的名字——“Ataraxia人工智能实验室”。“Ataraxia是古希腊的一种哲学思想,该哲学流派认为世界的知识和理论都是不完善的,只有通过不断学习才能达到更高的境界。人工智能就是一种机器需要不断学习和认知才能到达的境界。”彭垚说。
除了响亮的名字,实验室的墙壁上还挂满了蓝底科幻海报,上面写着“AI Civilization(人工智能文明)”;区别于到处都是瓶瓶罐罐的传统实验室,人工智能实验室遍布一排排计算机,屏幕上跳动着一行行代码、数据;变形金刚式的中小型机器人错落有致地矗立在办公桌上;一张张年轻的面孔熟练而有节奏地敲打着键盘,有的是算法工程师,有的是数据科学家,还有的是数据标识员……尽管从事的具体工作各不相同,但他们都有一个共同的称谓——“人工智能专家”。
“人工智能专家,可以简单理解为机器的‘启蒙老师’。”彭垚说,算法工程师先负责搭出一个最初步的算法框架,然后,数据科学家再把合适的数据装入算法框架里,通过优化、搭建出第一版机器模型。随后,数据标识员通过给图像、文字等数据做标记,为机器编写出一本附有正确答案的“教科书”,手把手教机器模型如何学习处理不同类别的信息。
在人工智能专家的启蒙和教导下,机器模型经过几天或者一周的学习后,就可以自主进行深度学习了。“当机器模型学习的准确率达到及格线,就可以开发成产品、投入试运行,然后一边运行、一邊继续学习。一两个月后,机器模型的准确率就会有‘脱胎换骨’的进步。”彭垚说。
用算法解决各行各业的“痛点”
“人工智能是计算机科学的一支,它的起始是算法。怎样把数据转化成有效的信息,进而解决各行各业的痛点,辅助其做决策是人工智能专家的愿景。”彭垚说,与长期从事某一个具体行业的上班族不同,人工智能专家需要在各行各业自如转换。
算法模型是最基础的工具,这些工具只有跟不同行业、不同用户的需求结合起来,才会有“用武之地”。“好的人工智能专家需要不断学习不同行业的知识,了解各行业的运行规律、发现他们的痛点,进而有针对性地写算法、建模型、做产品。”彭垚说。
例如,人工智能算法模型+娱乐媒体行业,就有了“智能鉴黄师”。对于直播、短视频平台来说,他们的一大痛点是如何实时清理平台上不健康的违法违规图像。“以往,一些平台需要雇佣百余名工人,24小时值班,挑出不合格的照片,现在采用机器深度学习平台,这些企业只需要雇佣几十个人,不仅清理的准确率更高,而且工作强度也减轻了,只要对机器模型的结果进行复查就可以了。”彭垚说。
人工智能算法模型+能源消费,催生了“智能抄表员”。通过图像识别和记录每户家庭每天的用气量,计算机能够精确预估当地燃气公司每天需要购买多少燃气,避免空烧燃气造成浪费。七牛服务的一家燃气公司,此前每年需要空烧掉价值约90亿元的燃气,采用了人工智能图像识别深度学习平台后,“智能抄表员”帮助公司减少了20%左右的能源浪费。
除此之外,人工智能专家开发的产品还能用于识别金融票据文字信息,提高财务处理的效率;搜集图像大数据信息,服务特种安全行业。“对于繁重、枯燥、高重复、不适合人类的工作来说,人工智能专家开发出来的产品是人力的完美替代。”彭垚说。
“终结者”还是“创造者”
人工智能的发展速度实在太快,以至于它的研发者都感到猝不及防。日前,美国社交媒体脸书公司创始人马克·扎克伯格与美国特斯拉公司首席执行官埃隆·马斯克就进行了一场激辩,前者对人工智能持乐观态度,而后者称其为人类文明的威胁。那么,人工智能专家这个新行当到底是其他行业从业人员的“终结者”,还是新行业的“创造者”?
“我们不希望取代其他职业,而是希望革新陈旧的生产力和生产方式,促进既有行业的从业人员学习更多先进知识和技能,改善整个团队的运行模式和工作效率。”彭垚说。
马车夫、打字员这些人类还有记忆的工作,今天已经几乎没有了,取代它们的是汽车驾驶员、电脑和新的工作。在不远的将来,人类必将生活在一个“充满了人工智能的世界”,很多行业都会从人提供服务转变为机器人提供服务。“人类要学会在这样一个不断演进、不断进步的社会中生存,具备非常强的适应能力和学习能力。这样,我们就不会害怕社会的变化。”彭垚说。