论文部分内容阅读
强化学习是Agent学习中广泛使用的方法,在智能机器人、经济学、工业制造和博弈等领域得到了广泛的应用,但学习速度慢是强化学习的主要不足。迁移学习可从源任务中获得与目标任务相关的知识,利用这些知识去提高学习效率与效果。本文提出Agent地图迁移算法,实现了Agent在不同状态空间下的经验迁移。实现将Agent在简单环境中的学习经验迁移到复杂环境中,实验中验证了算法可加快Agent路径规划速度。