论文部分内容阅读
针对模糊支持向量机在文本分类应用中的隶属度函数确定问题,提出了一种基于模糊支持向量机与决策树的文本分类器的构建方法。该方法不仅考虑了样本与类中心之间的关系,还根据传统支持向量机中包含支持向量且平行于分类面的平面构建切球,来确定类中各个样本之间的关系,由样本点与球的位置关系计算其隶属度,可以合理地区分有效样本和噪音、孤立点样本。并与决策树方法相结合,实现多类分类。实验结果表明,该方法具有良好的分类效果。