论文部分内容阅读
高光谱图像的超多波段可以描述丰富的地物信息,但是也带来了维数灾难的问题。文章提出了主成分分析(principal component analysis,PCA)与线性判别式分析(linear discriminant analysis,LDA)组合降维方法,使类内距离最小化、类间距离最大化,有效地消除数据冗余并保留主要信息量,保证了降维后的数据具有最佳区分度;旋转森林是一种先进高效的集成学习算法,将基分类器由决策树改进为支持向量机(support vector machine,SVM),并将组合降维