论文部分内容阅读
目前没有能够使用简单网络结构生成高质量特定图像的生成模型,针对这一项任务,结合边界平衡生成对抗网络(boundary equilibrium generative adversarial network,BEGAN)的优点,添加附加条件特征以及均方误差损失,建立了条件边界平衡生成对抗网络(conditional-BEGAN,C-BEGAN),使用这种方法提取其中的生成模型用于特定图像的生成,实验结果表明,该方法相比于其他监督类生成模型可以使用更简单的网络达到更快的收敛速度,并且能够生成具有更好质量以