论文部分内容阅读
儿向语音对早期儿童成长有较大影响,正确检测并充分利用儿向语音具有现实意义。为此,构建一种基于Adaboost算法的汉语儿向语音检测模型,以提高检测准确率。使用决策树作为弱分类器对提取的汉语儿向语音特征进行学习,并组成弱分类器元组,同时对该弱分类器组的分类结果进行加权,区分待测语音的类别。实验结果表明,汉语儿向语音的元音持续时长超过非儿向语音的元音持续时长;提升弱分类器的数量可提高汉语儿向语音检测正确率;分段语音时间越长,汉语儿向语音检测正确率越高;采用改进的Adaboost算法比采用v—SVM算法具有更高