长江口余水位时空变化的数值模拟和分析

来源 :华东师范大学学报(自然科学版) | 被引量 : 0次 | 上传用户:shoretxm
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘要: 應用严格验证过的河口海岸三维数值模型, 模拟了长江口余水位的时空变化, 分析径流、潮汐和风应力对余水位的影响, 揭示了余水位变化的动力机制. 长江河口余水位的空间分布和随时间变化过程主要是受径流影响, 其次是受风的影响. 余水位上游大于下游. 全年最高余水位出现在9月, 徐六泾、崇西、南门、堡镇和深水航道北导堤东端分别为0.861 m、0.754 m、0.629 m、0.554 m和0.298 m. 最低余水位徐六泾和崇西出现在1月, 分别为0.420 m和0.391 m; 南门和堡镇出现在2月, 分别为0.313 m和0.291 m; 深水航道北导堤东端出现在4月, 量值为0.111 m. 北支余水位低于南支, 原因在于进入北支的径流量少. 南港的余水位大于北港, 同一河道内南侧的余水位大于北侧, 原因在于径流受科氏力作用右偏. 对比仅有径流、潮汐和风的数值试验结果, 对余水位作用最大的是径流, 其次是潮汐, 最小的是风. 月平均径流量7月达到最大, 会导致最高余水位, 但期间为东南风, 产生的余水位十分微小. 9月盛行的北风产生向陆的Ekman水体输运, 会引起河口余水位上升, 且期间径流量仍处于高值区, 两者相互作用, 导致整个河口全年最高余水位出现在9月.
  关键词: 余水位; 径流; 潮汐; 风; 长江口
  中图分类号: P731.2 文献标志码: A DOI: 10.3969/j.issn.1000-5641.2021.04.014
  Numerical simulation and analysis of the spatial and temporal variations in residual water levels of the Changjiang Estuary
  SONG Yunping, ZHU Jianrong(State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China)
  Abstract: Residual water level is an important factor affecting water depth; the water level depends primarily on river discharge, tidal conditions, and wind stress, and it can change significantly with time and space. Studying the temporal and spatial variations in residual water levels—and the respective influencing factors—is of great scientific significance and can be applied to estuarine water level prediction, water resources utilization, seawall design, flood protection, and navigation. In this paper, we used a validated three-dimensional numerical model of the estuary and coast to: simulate the temporal and spatial variations in the residual water levels of the Changjiang Estuary; analyze the impacts of river discharge, tidal conditions, and wind stress on residual water levels; and determine the dynamic mechanisms for its change. The spatial and temporal variations in residual water levels of the Changjiang Estuary is driven primarily by the fact that upstream residual water levels are higher than downstream levels because of runoff force. The highest residual water level appears in September, reaches 0.861, 0.754, 0.629, 0.554, and 0.298 m at Xuliujing, Chongxi, Nanmen, Baozhen, and the easternmost section of the northern dike of the Deepwater Navigation Channel, respectively. The lowest residual water level appears in: January for Xuliujing (0.420 m) and Chongxi (0.391 m), February for Nanmen (0.313 m) and Baozhen(0.291 m), and April for the easternmost section of the northern dike of the Deepwater Navigation Channel (0.111 m). The residual water level in the North Branch is lower than the level in the South Branch, because a small amount of river water flows into the North Branch. The residual water level is higher in the South Channel than the one in the North Channel. Within the South Channel itself, furthermore, the water level is higher on the south side than the north due to the Coriolis force, which makes the water turn to the right. By using numerical experiments to compare the impact of different factors, we found that runoff has the largest impact on residual water levels, tidal conditions have the second largest impact, and wind has minimal impact. The monthly mean river discharge is largest in July, which should lead to the highest residual water level, but southeasterly winds prevail in the same period leading to small residual water levels. The river discharge in September remains high and northerly winds prevail, driving the Ekman water transport landward and resulting in a residual water level rise in the estuary. The interaction between the river discharge and the northeasterly wind makes the residual water level highest in September rather than in July. In conclusion, this study revealed the dynamic mechanism explaining the highest residual water level observed in September.


  2.4 风对余水位的影响
  在仅考虑风的情况下, 长江口由风产生的余水位随季风方向的变化而变化 (见图13). 在2月, 长江口盛行北风, 风速约5 m/s(见图3). 北风会产生沿岸向南的流动, 在科氏力作用下产生向岸的Ekman水体输运, 导致沿岸和长江口水位上升[28], 余水位在徐六泾为0.060 m, 在深水航道北导堤东端为0.040 m. 5月东南风约为3.5 m/s, 8月東南风为3.0 ~ 5.0 m/s, 风生Ekman水体输运输向东北, 难以产生水位的抬升, 在长江河口余水位近乎为0. 11月风向转为偏北风, 风速约为5.0 m/s, 出现了风生余水位, 空间分布和量值与2月大致一样.


  从徐六泾、崇西、南门、堡镇和深水航道北导堤东端余水位随时间变化过程看(见图14), 余水位在1月达到最高值, 分别为0.134 m、0.101 m、0.073 m、0.073 m和0.795 m; 余水位在7月达到最低值, 分别为–0.009 m、–0.015 m、–0.026 m、–0.035 m和–0.065 m. 在夏季6—8月盛行东南风期间余水位处于低值, 在9月至来年2月盛行偏北风期间处于高值. 尤其值得注意的是, 在9月已转为偏北风, 平均风速约为5 m/s (见图3), 导致堡镇余水位比7月高了约0.07 m.


  3 结 论
  本文应用改进的三维数值模型ECOM-si, 数值模拟长江口余水位的时空变化, 分析径流、潮汐和风应力对余水位的影响, 揭示余水位变化的动力机制. 采用崇西、南门和堡镇3个水文站2018年3月1—19日的水位、南槽2个浮标站2018年3月9—19日的流速流向和盐度验证数值模型, 结果表明模型能准确地模拟长江河口的水动力过程.
  长江河口余水位的空间分布, 受径流作用上游大于下游, 在代表冬季、春季、夏季和秋季的2月、5月、8月和11月这4个代表性月份中, 徐六泾的余水位8月最高、5月次高、11月次低、2月最低, 与径流量具有对应关系, 说明在长江河口上游余水位取决于径流量. 在深水航道北导堤东端余水位11月最高、8月次高、2月次低、5月最低, 说明在长江口门外侧余水位除了径流量的影响外, 还受海洋因素的影响. 北支余水位低于南支, 原因在于进入北支的径流量低. 南港的余水位大于北港, 同一河道内南侧的余水位大于北侧, 原因在于径流受科氏力作用右偏. 从徐六泾、崇西、南门、堡镇和深水航道北导堤东端5个站点逐时余水位随时间变化过程看, 全年最高余水位出现在9月, 徐六泾、崇西、南门、堡镇和深水航道北导堤东端分别为0.861 m、0.754 m、0.629 m、0.554 m和0.298 m. 最低余水位徐六泾和崇西出现在1月, 分别为0.420 m和0.391 m; 南门和堡镇出现在2月, 分别为0.313 m和0.291 m; 深水航道北导堤东端出现在4月, 量值为0.111 m.
  在仅考虑径流的情况下, 长江河口余水位的分布体现了上游高、下游低的特征. 在徐六泾、崇西、南门、堡镇和深水航道北导堤东端, 余水位在7月达到最高值, 在1月达到最低值. 余水位随时间变化过程体现了与径流量高度相关, 径流量越大, 余水位越高. 在仅考虑潮汐的情况下, 河口余水位为上游高、下游低的分布. 因潮汐的季节性变化不大, 2月、5月、8月和11月仅有潮汐产生的余水位分布基本一致. 余水位最大值出现在1月, 徐六泾、崇西、南门、堡镇最小值出现在7月, 深水航道北导堤东端最小值出现在10月. 崇西站余水位比南门和堡镇高了约0.07 m. 在仅考虑风的情况下, 长江口由风产生的余水位随季风方向的变化而变化. 枯季北风产生沿岸向南的流动, 在科氏力作用下产生向岸的Ekman水体输运, 导致长江口水位上升. 洪季东南风产生Ekman水体输运在口外指向东北, 在长江河口余水位很小. 从余水位随时间变化过程看, 余水位在1月达到最高值, 在7月达到最低值. 在6—8月夏季盛行东南风期间余水位处于低值, 在9月至来年2月盛行偏北风期间处于高值. 对比仅有径流、潮汐和风的数值试验结果, 对口门内余水位作用最大的是径流, 其次是潮汐, 最小的是风.
  月平均径流量7月达到最大, 量值为49 800 m3/s, 但期间为东南风; 9月径流量为38 800 m3/s, 仍处于高值区, 并且盛行北风. 两者相互作用, 导致长江口全年最高余水位出现在9月, 而不是最大径流量的7月. 本文从动力机制上揭示了这个异常特征.
  [参 考 文 献]
  [ 1 ]王慧, 刘克修, 范文静, 等. 中国沿海增减水的变化特征及与海平面变化的关系 [J]. 海洋学报, 2017, 39(6): 10-20.
  [ 2 ]裴文斌, 牛桂芝, 董海军. 余水位及潮汐差分方法 [J]. 水道港口, 2007, 28(6): 439-443.
  [ 3 ]牛桂芝, 董海军, 裴文斌. 余水位的成因及其特性 [C]//第二十一届海洋测绘综合性学术研讨会论文集. 中国测绘学会, 2009.
  [ 4 ]FRISON T W. Dynamics of the residuals in estuary water levels [J]. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 2000, 25(4): 359-364.   [ 5 ]陈吉余, 沈焕庭, 恽才兴. 长江河口动力过程和地貌演变 [M]. 上海: 上海科学技术出版社, 1988: 31-37.
  [ 6 ]WONG K C, GARVINE R W. Observations of wind-induced, subtidal variability in the Delaware estuary [J]. Journal of Geophysical Research: Oceans, 1984, 89(C6): 10589-10597.
  [ 7 ]DENES T A, CAFFREY J M. Changes in seasonal water transport in a Louisiana estuary, Fourleague Bay, Louisiana [J]. Estuaries, 1988, 11(3): 184-191.
  [ 8 ]HESS K. Water level simulation in bays by spatial interpolation of tidal constituents, residual water levels, and datums [J]. Continental Shelf Research, 2003, 23(5): 395-414.
  [ 9 ]BUSCHMAN F A, HOITINK A J F, VAN DER VEGT M, et al. Subtidal water level variation controlled by river flow and tides [J]. Water Resources Research, 2009, 45(10): W10420.
  [10]SASSI M G, HOITINK A J F. River flow controls on tides and tide-mean water level profiles in a tidal freshwater river [J]. Journal of Geophysical Research: Oceans, 2013, 118(9): 4139-4151.
  [11]POERBANDONO, HANDOKO E Y, ADYTIA D. Extremes of residual water levels in the West of Java Sea, Indonesia[C]//AIP Conference Proceedings. AIP Publishing LLC, 2018, 1987(1): 020081.
  [12]CAI H, YANG Q, ZHANG Z, et al. Impact of river-tide dynamics on the temporal-spatial distribution of residual water level in the Pearl River channel networks [J]. Estuaries and Coasts, 2018, 41(7): 1885-1903.
  [13]蔡華阳, 杨昊, 郭晓娟, 等. 珠江磨刀门河口径潮动力耦合条件下余水位的多时空尺度分析 [J]. 海洋学报, 2018, 40(7): 57-67.
  [14]洪鹏锋, 杜文印. 强人类活动驱动下珠江磨刀门河口潮汐动力增强原因初探 [J]. 人民珠江, 2019, 40(9): 28-32.
  [15]宋永港, 朱建荣, 吴辉. 长江河口北支潮位与潮差的时空变化和机理 [J]. 华东师范大学学报(自然科学版), 2011(6): 10-19.
  [16]CAI H, SAVENIJE H H G, GAREL E, et al. Seasonal behaviour of tidal damping and residual water level slope in the Yangtze River estuary: Identifying the critical position and river discharge for maximum tidal damping [J]. Hydrology and Earth System Sciences, 2019, 23(6): 2779-2794.
  [17]张先毅, 黄竞争, 杨昊, 等. 长江河口潮波传播机制及阈值效应分析 [J]. 海洋与湖沼, 2019, 50(4): 788-798.
  [18]黄竞争, 张先毅, 吴峥, 等. 长江感潮河段潮波传播变化特征及影响因素分析 [J]. 海洋学报, 2020, 42(3): 25-35.
  [19]BLUMBERG A F, MELLOR G L. A description of a three‐dimensional coastal ocean circulation model [J]. Three-dimensional Coastal Ocean Models, 1987(4): 1-16.
  [20]WU H, ZHU J R, SHEN J, et al. Tidal modulation on the Changjiang River plume in summer [J]. Journal of Geophysical Research: Oceans, 2011, 116(C8): 192-197.
  [21]Lü H, ZHU J R. Impact of the bottom drag coefficient on saltwater intrusion in the extremely shallow estuary [J]. Journal of Hydrology, 2018, 557: 838-850.   [22]LARGE W G, POND S. Open ocean momentum flux measurements in moderate to strong winds [J]. Journal of Physical Oceanography, 1981, 11(3): 324-336.
  [23]海洋图集编委会. 渤海黄海东海海洋图集: 水文 [M]. 北京: 海洋出版社, 1993.
  [24]RALSTON D K, GEYER W R, LERCZAK J A. Subtidal salinity and velocity in the Hudson River estuary: Observations and modeling [J]. Journal of Physical Oceanography, 2008, 38(4): 753-770.
  [25]LI L, ZHU J R, WU H, et al. A numerical study on water diversion ratio of the Changjiang (Yangtze) estuary in dry season [J]. Chinese Journal of Oceanology and Limnology, 2010, 28(3): 700-712.
  [26]朱建荣, 胡松. 河口形状对河口环流和盐水入侵的影响 [J]. 华东师范大学学报(自然科学版), 2003(2): 70-75.
  [27]CAI H, SAVENIJE H H G, JIANG C. Analytical approach for predicting fresh water discharge in an estuary based on tidal water level observations [J]. Hydrology and Earth System Sciences, 2014, 18(10): 4153.
  [28]LI L, ZHU J, WU H. Impacts of wind stress on saltwater intrusion in the Yangtze Estuary [J]. Science China Earth Sciences, 2012, 55: 1178-1192.
  (責任编辑: 李万会)
其他文献
基于ANSYS/LS-DYNA软件建立了预应力钢筋混凝土T形梁、炸药和破片的数值模型,并探究其承受冲击波-破片复合作用时的动态响应及损伤,对研究方法的有效性进行了试验对比验证.分
摘要: 总结了不同类型纳米材料对藻华控制的作用机制最新研究进展, 系统分析了环境因子对纳米材料调控营养盐迁移转化以及细胞毒性过程的影响. 并在此基础上对纳米材料的固定化研究提出展望, 以期实现纳米材料功能化和对其环境风险的精确管控, 为藻华治理提供新的解决思路.  关键词: 纳米材料; 藻华; 营养盐; 细胞毒性; 固定化  中图分类号: X522 文献标志码: A DOI: 10.3969/j.
摘要: 针对我国南方红壤(江西鹰潭孙家坝小流域)4种不同土地利用类型, 在2019年6—10月开展了室内土壤温湿度控制实验, 采用温室气体分析仪(Picarro-G2508)结合静态箱法对土壤温室气体(CO2、CH4、N2O)排放通量进行同步实时监测, 以研究全球气候变化背景下不同土地利用类型土壤温室气体排放差异及其对温湿度的响应. 结果显示, 4种土地利用类型土壤的全球增温潜势(global w
摘要: 以“十一五”和“十二五”期间的A2/O升级改造技术成果为基础, 结合当前运行良好且具有代表性的改良A2/O工艺, 从原位优化改造和深度处理等方面总结了高排放标准下城镇污水厂A2/O工艺升级改造的技术对策. 介绍了具有代表性的A2/O升级改造示范工程的运行情况, 并对A2/O工艺的优化和推广使用提供建议.  关键词: 高排放标准; 城镇污水厂; A2/O; 升级改造; 工程示范  中图分类号
为科学合理计算钢-混组合梁在长期荷载作用下的挠度,综合考虑钢梁与混凝土桥面板层间滑移效应、钢-混组合梁全截面剪切变形及混凝土桥面板收缩徐变的影响,运用能量变分法推导出钢-混组合梁挠度计算的控制微分方程.引入均布荷载作用下简支和两跨连续钢-混组合梁的自然边界条件,求解出了钢-混组合梁在这两种边界条件下的挠度计算公式.计算公式的可靠性得到了实测值和有限元值的验证.研究结果表明:考虑剪切变形与层间滑移后,两跨连续钢-混组合梁跨中最大挠度计算值相对于初等梁理论增大37.4%,而同时考虑混凝土收缩徐变后其挠度计算值