论文部分内容阅读
针对传统关联规则挖掘中可能会忽略具有时间因素的关联规则的问题,提出了一种具有时间约束的改进时态关联规则算法.该算法通过计算模式平均支持度、数据集平均支持度、模式集中度等参数来判断Apriori算法所得到的模式是否在某一时间区域数据集上具有较高支持度,再对该数据集进行进一步挖掘,以找到更精确的和时间相关的模式,从而得到单个或不同时间区间上的关联规则以及跨时间区间和跨事务的关联规则.通过实验分析,该算法是可行的,并在实际应用中有一定的意义.