论文部分内容阅读
A novel scheme about the continuous electromagnetic purification of aluminum melt was put forward based on the utilization of a square separation pipe and a 50 Hz alternating current to produce electromagnetic force. It is experimentally found that with electrical current of 400 A/cm2, it takes only 10 s to remove 95% inclusion from aluminum melt. Comprehensive numerical simulations were carried out to investigate the dynamics mechanisms behind the process. The results show that the removal of inclusion is attributed to the cooperative effects of electromagnetic buoyancy and the secondary flow induced by the rotational electromagnetic force, and the removal efficient increases with the size of inclusion and the electrical current imposed. Theoretical predictions on the distribution and removal efficiency of inclusion were supported by the experiments.