论文部分内容阅读
本文将SVM用于全极化SAR图像分类,并提出一种新的应用于SVM分类的特征选择算法。该算法以支持向量个数作为特征评估准则,利用顺序前进法加入特征。基于NASA/JPL实验室AIRSAR系统的L波段荷兰Flevoland全极化数据的与RELIEF—F算法的对比实验表明,在特征个数更少(或相当)的情况下,本文特征选择算法能在更广泛的SVM参数取值范围内获得更高的分类精度。