论文部分内容阅读
设G=(V,E)是一个非空图,对于一个函数f∶V(G)∪E(G)→{-1,1},则称f的权重为w(f)=∑x∈V(G)∪E(G)f(x)。若x∈V(G)∪E(G),定义f[x]=∑y∈NT[x]f(y)。如果对所有的x∈V(G)∪E(G)都有f[x]≤1,则称f是图G的一个反全符号控制函数。G的反全符号控制数定义为γ*rs(G)=max{w(f)|f是图G的一个反全符号控制函数}。本文得到了图的反全符号控制数的2个上界,并研究了路Pn和星图K1,n的反全符号控制数。