论文部分内容阅读
摘要:智能变电站与原来的变电站相比,无论是在系统结构方面,还是在继电保护系统方面,都存在很大的差异,需要相关人员进一步分析和了解。从智能变电站及其继电保护系统的概念入手,加强对该新型变电站技术基本架构及其技术特征的了解,并在此基础上,全面分析其继电保护系统的可靠性,充分保障电网运行的安全性和稳定性。
关键词:智能变电站;继电保护;可靠性;互感器
0背景
智能变电站是智能电网的重要基础,其运行过程的稳定程度在很大程度上影响着电网的质量。而继电保护系统是智能变电站的重要组成部分,其运行的可靠性和稳定性又将在很大程度上决定智能变电站运行的稳定性。在这种情况下,如何保障继电保护系统的可靠性,成为了相关单位及各部门所面临的重要问题。
1.智能变电站及其继电保护系统
智能变电站一般由两个层面构成,分别为一次设备和二次设备。主要以数字化管理和智能化管理为主,则主要为网络化管理,这两个层面的共同管理,使得智能变电站呈现功能分散、数据共享的特点。智能变电站的架构主要分为两个部分:过程层、间隔层和站控层和过程层网络和站控层网络。过程层主要包括变压器、断路器、互感器等一次设备和合并单元及智能终端等智能组件,主要是为了完成一些与一次设备相关的任务。间隔层主要以二次设备为主要构成元件,主要实现对数据信息的接收、汇总以及传输等功能;同时,还能对某些一次设备进行操作闭锁和保护控制。站控层则主要是通过人机界面,实现对间隔层中二次设备的控制和管理。两网则主要是处理设备层与设备层之间的通信,从而实现数据的站内传输和共享。
2.智能变电站继电保护系统可靠性的重要意义
可靠性是指元件系统在一定环境和时间范围内,无故障地完成规定功率。智能变电站是智能电网建设工作中的关键部分,而继电保护系统的稳定运行影响着智能变电站的工作情况。智能变电站主要通过网络技术和信息技术实现电力系统的稳定运行,当中涉及许多智能电子设备,并且对设备的稳定性、安全性和可靠性有很高的要求。智能变电站的运行过程中,运行环境、数据信息的细微改变会对电力系统的运行产生重的大影响。继电保护系统能在电力系统运行产生问题时,根据故障发生的时间地点,发挥其隔离功能,使电力系统避免受到电流、电压等的危害,进而保障电力系统的稳定运行。因此,保证智能变电站继电保护系统的可靠性对整个电力系统的运行至关重要,提升智能变电站继电保护系统的可靠性势在必行。
3.提升智能变电站继电保护系统可靠性的策略
3.1通过数字化保障继电保护的性能
加强重视互感器的传输性能,以减少互感器故障,降低其他因素对继电保护造成的影响。这能够保证传输电气量信息的真实性和有效性,同时提高继电保护装置的性能。合理利用数字化,通过数字化的组网方式分析和计算数据,可以有效提升数据的准确性,从而保证继电保护的性能。
3.2提升继电保护网络的架构
总线结构中的交换机可以通过端口和其他交换机进行连接。一般情况下,IED端口的速度没有上端口快,且交换机的最大数量由系统最大延时决定。当主交换机和其他交换机进行连接时,能够有效缩短系统的等待时间。这种结构不具有冗余度,在出现故障时,可能会造成所有IED信息的遗失,环形结构交换机的优点是能够自行组成闭环。当连接点突发故障问题时,它可以利用其充足的冗余度进行调节。信息在被传递的过程中会进行多方面工作,需要消耗宽带对其进行传输。系统内部有一个管理交换机,主要是向交换机发送相应指令,使交换机自行检测环路。信息在环路中传送的时候会停止流动,从而终止传输。
3.3提高智能变电站母线保护
智能变电站母线保护是断电保护系统的关键环节,母线装置的可靠性会对智能变电站的正常运行带来影响。为提高智能变电站保护系统的可靠性,需要使保护系统具备合理的冗余结构。冗余性会受保护装置和通信网络的冗余度的影响。对于物理层次,对控制网络拓扑结构实现灵活组网,可以发挥出特有的优势;采用双以太网并行的保护技术,可以使其具备的冗余优势得到更好地体现。智能变电站通信网络拓扑结构可以采取多种型式,科学合理地选用结构型式可以更好地提高冗余度。冗余装置是提升继电保护系统的关键措施,任何型式的变电站都离不开冗余设计。可以利用两套继电保护系统,并设计终端保护设置、数据交换机及合并单元,以提高系统的保护性能。
4提升智能变电站继电保护系统可靠性的方法
4.1提升变压器保护的可靠性
电力系统对电压额度有一定的要求,确保电压额度的准确性才能保证电力系统供配电的正常运行。在实现对电压的有效控制的过程中,变压器系统的运用起着决定性的作用,故而提升变压器保护的可靠性对保证电力系统的运行起着重要的作用。基于变压器系统对变电站继电保护系统可靠性的重要作用,在变电站配置变压器的过程中,可以采取分布式的方法进行配置,这样可以分散变压器系统的压力,可以避免由于变压器承受过大压力而出现问题。而在继电保护系统的后期配置中,需要将分散配置与集中式配置进行结合,以此来降低系统的复杂性,实现变压器对继电保护系统的保护作用,进而提升继电保护系统的可靠性。
4.2做好过程层的继电保护
过程层的继电保护主要是通过对电力系统中母线、变压器和配电线路等进行保护,实现降低电力系统运行风险,对电力调度系统实施必要的保护,进而实现保障电力系统安全运行的目的。通常来说,继电保护系统的稳定性能保证电力系统在发生波动时,保护定值稳定,从而保障电力系统的稳定运行。但是,在智能变电站中存在着大量一次设备的应用,在此过程中,应注意开关与硬件的分离,保证开关和硬件的相对独立性,进而对变电站母线和输电线路实施保护。在实际的继电保护工作中,可以通过多段线路保护的方式对智能变电站母线和变压器保护进行定义。在变电站主站采样的同时,进行采样数据的实时调整,保证采样数据的适用性和可靠性。
4.3间隔层中继电保护的提高
将双重化装置运用到变电站继电保护系统中,对后备保护进行集中配置,是做好间隔层继电保护,提高继电保护系统可靠性的有效措施。后备保护系统能为变电站后备设备、开关失灵及相邻范围内的线路和端母线提供保护,进而对电网系统运行中产生的故障和问题进行精确的诊断,并提供及时有效的解决办法。除此之外,可以在技术手段允许的情况下,将智能变电站的电压等级进行集中配置,使其适应电网运行的具体情况。
4.4可视化技术的运用
为提高智能变电站继电保护可靠性,需要对故障实现有效处理。虽然信息技术得到了巨大進步,但是很多继电保护装置的运行故障监测和处理还采用表格和数据方式。智能变电站引入可视化技术对继电保护装置进行监控是十分必要的,可以实时对继电保护装置运行情况,实现故障预警和运行数据采集。继电保护装置产生运行故障时,需要对中间节点文件形成的数据信息进行准确采集,以全面分析故障,从而确定故障原因。为工程技术人员提供准确的排查记录信息,针对故障情况制定切实可行解决措施。
5.结语
综上所述,随着近年来我国电网建设事业的快速发展,在信息技术深入发展的今天,智能变电站已成为我国电网建设的重要组成部分。为了进一步保障我国智能变电站的安全正常运行,加强继电保护系统的可靠性成为当前建设的重要内容。通过对智能变电站继电保护系统的可靠性进行分析,从硬件系统与软件系统中,采取有效措施增强该系统日常运行的稳定性,进而为我国电力事业的发展提供安全保障。
参考文献
[1]张尚然.智能变电站继电保护可靠性研究[J].2017,06.
[2]何晔,何瑾.智能变电站继电保护系统及可靠性研究[J].数字通信世界,2018,06.
[3]费姗姗.智能变电站继电保护可靠性分析[J].黑龙江科学,2017,6.
关键词:智能变电站;继电保护;可靠性;互感器
0背景
智能变电站是智能电网的重要基础,其运行过程的稳定程度在很大程度上影响着电网的质量。而继电保护系统是智能变电站的重要组成部分,其运行的可靠性和稳定性又将在很大程度上决定智能变电站运行的稳定性。在这种情况下,如何保障继电保护系统的可靠性,成为了相关单位及各部门所面临的重要问题。
1.智能变电站及其继电保护系统
智能变电站一般由两个层面构成,分别为一次设备和二次设备。主要以数字化管理和智能化管理为主,则主要为网络化管理,这两个层面的共同管理,使得智能变电站呈现功能分散、数据共享的特点。智能变电站的架构主要分为两个部分:过程层、间隔层和站控层和过程层网络和站控层网络。过程层主要包括变压器、断路器、互感器等一次设备和合并单元及智能终端等智能组件,主要是为了完成一些与一次设备相关的任务。间隔层主要以二次设备为主要构成元件,主要实现对数据信息的接收、汇总以及传输等功能;同时,还能对某些一次设备进行操作闭锁和保护控制。站控层则主要是通过人机界面,实现对间隔层中二次设备的控制和管理。两网则主要是处理设备层与设备层之间的通信,从而实现数据的站内传输和共享。
2.智能变电站继电保护系统可靠性的重要意义
可靠性是指元件系统在一定环境和时间范围内,无故障地完成规定功率。智能变电站是智能电网建设工作中的关键部分,而继电保护系统的稳定运行影响着智能变电站的工作情况。智能变电站主要通过网络技术和信息技术实现电力系统的稳定运行,当中涉及许多智能电子设备,并且对设备的稳定性、安全性和可靠性有很高的要求。智能变电站的运行过程中,运行环境、数据信息的细微改变会对电力系统的运行产生重的大影响。继电保护系统能在电力系统运行产生问题时,根据故障发生的时间地点,发挥其隔离功能,使电力系统避免受到电流、电压等的危害,进而保障电力系统的稳定运行。因此,保证智能变电站继电保护系统的可靠性对整个电力系统的运行至关重要,提升智能变电站继电保护系统的可靠性势在必行。
3.提升智能变电站继电保护系统可靠性的策略
3.1通过数字化保障继电保护的性能
加强重视互感器的传输性能,以减少互感器故障,降低其他因素对继电保护造成的影响。这能够保证传输电气量信息的真实性和有效性,同时提高继电保护装置的性能。合理利用数字化,通过数字化的组网方式分析和计算数据,可以有效提升数据的准确性,从而保证继电保护的性能。
3.2提升继电保护网络的架构
总线结构中的交换机可以通过端口和其他交换机进行连接。一般情况下,IED端口的速度没有上端口快,且交换机的最大数量由系统最大延时决定。当主交换机和其他交换机进行连接时,能够有效缩短系统的等待时间。这种结构不具有冗余度,在出现故障时,可能会造成所有IED信息的遗失,环形结构交换机的优点是能够自行组成闭环。当连接点突发故障问题时,它可以利用其充足的冗余度进行调节。信息在被传递的过程中会进行多方面工作,需要消耗宽带对其进行传输。系统内部有一个管理交换机,主要是向交换机发送相应指令,使交换机自行检测环路。信息在环路中传送的时候会停止流动,从而终止传输。
3.3提高智能变电站母线保护
智能变电站母线保护是断电保护系统的关键环节,母线装置的可靠性会对智能变电站的正常运行带来影响。为提高智能变电站保护系统的可靠性,需要使保护系统具备合理的冗余结构。冗余性会受保护装置和通信网络的冗余度的影响。对于物理层次,对控制网络拓扑结构实现灵活组网,可以发挥出特有的优势;采用双以太网并行的保护技术,可以使其具备的冗余优势得到更好地体现。智能变电站通信网络拓扑结构可以采取多种型式,科学合理地选用结构型式可以更好地提高冗余度。冗余装置是提升继电保护系统的关键措施,任何型式的变电站都离不开冗余设计。可以利用两套继电保护系统,并设计终端保护设置、数据交换机及合并单元,以提高系统的保护性能。
4提升智能变电站继电保护系统可靠性的方法
4.1提升变压器保护的可靠性
电力系统对电压额度有一定的要求,确保电压额度的准确性才能保证电力系统供配电的正常运行。在实现对电压的有效控制的过程中,变压器系统的运用起着决定性的作用,故而提升变压器保护的可靠性对保证电力系统的运行起着重要的作用。基于变压器系统对变电站继电保护系统可靠性的重要作用,在变电站配置变压器的过程中,可以采取分布式的方法进行配置,这样可以分散变压器系统的压力,可以避免由于变压器承受过大压力而出现问题。而在继电保护系统的后期配置中,需要将分散配置与集中式配置进行结合,以此来降低系统的复杂性,实现变压器对继电保护系统的保护作用,进而提升继电保护系统的可靠性。
4.2做好过程层的继电保护
过程层的继电保护主要是通过对电力系统中母线、变压器和配电线路等进行保护,实现降低电力系统运行风险,对电力调度系统实施必要的保护,进而实现保障电力系统安全运行的目的。通常来说,继电保护系统的稳定性能保证电力系统在发生波动时,保护定值稳定,从而保障电力系统的稳定运行。但是,在智能变电站中存在着大量一次设备的应用,在此过程中,应注意开关与硬件的分离,保证开关和硬件的相对独立性,进而对变电站母线和输电线路实施保护。在实际的继电保护工作中,可以通过多段线路保护的方式对智能变电站母线和变压器保护进行定义。在变电站主站采样的同时,进行采样数据的实时调整,保证采样数据的适用性和可靠性。
4.3间隔层中继电保护的提高
将双重化装置运用到变电站继电保护系统中,对后备保护进行集中配置,是做好间隔层继电保护,提高继电保护系统可靠性的有效措施。后备保护系统能为变电站后备设备、开关失灵及相邻范围内的线路和端母线提供保护,进而对电网系统运行中产生的故障和问题进行精确的诊断,并提供及时有效的解决办法。除此之外,可以在技术手段允许的情况下,将智能变电站的电压等级进行集中配置,使其适应电网运行的具体情况。
4.4可视化技术的运用
为提高智能变电站继电保护可靠性,需要对故障实现有效处理。虽然信息技术得到了巨大進步,但是很多继电保护装置的运行故障监测和处理还采用表格和数据方式。智能变电站引入可视化技术对继电保护装置进行监控是十分必要的,可以实时对继电保护装置运行情况,实现故障预警和运行数据采集。继电保护装置产生运行故障时,需要对中间节点文件形成的数据信息进行准确采集,以全面分析故障,从而确定故障原因。为工程技术人员提供准确的排查记录信息,针对故障情况制定切实可行解决措施。
5.结语
综上所述,随着近年来我国电网建设事业的快速发展,在信息技术深入发展的今天,智能变电站已成为我国电网建设的重要组成部分。为了进一步保障我国智能变电站的安全正常运行,加强继电保护系统的可靠性成为当前建设的重要内容。通过对智能变电站继电保护系统的可靠性进行分析,从硬件系统与软件系统中,采取有效措施增强该系统日常运行的稳定性,进而为我国电力事业的发展提供安全保障。
参考文献
[1]张尚然.智能变电站继电保护可靠性研究[J].2017,06.
[2]何晔,何瑾.智能变电站继电保护系统及可靠性研究[J].数字通信世界,2018,06.
[3]费姗姗.智能变电站继电保护可靠性分析[J].黑龙江科学,2017,6.