论文部分内容阅读
针对胃粘膜肿瘤细胞图像的高维性、不规则性及复杂性特征,提出基于双向2DPCA(二维主成分分析)和SVM(支持向量机)的肿瘤细胞识别方法。双向2DPCA同时对图像行、列方向进行特征提取运算,大大降低图像特征维数。结合基于统计理论的SVM在分类识别方面的优势,通过引入核函数巧妙地解决非线性问题,从而快速有效地实现细胞分类。实验表明该方法不但有效提高了识别率,而且算法时间明显减少。