论文部分内容阅读
We report a novel method to prepare nanohybrid shish-kebab (NHSK) structure of polyethylene (PE) and carbon nanotube (CNT). Pristine CNTs without surface modification with high concentration was effectively dispersed in xylene solution by a simple shearing method, which induces the quick crystallization of PE in xylene to form a novel NHSK structure with more dense and smaller PE kebab on CNT axis. The flocculated NHSK product was transferred quickly from the xylene solution to the ethanol solution, in order to shorten the preparation time. The freeze-drying method was used in vacuum instead of high-temperature drying to avoid the aggregation of NHSK product. These improvements allow the formation of NHSK with an absolute yield of 200 mg·h-1 , which is 2000 folds of that reported previously. It is favorable to apply this structured material in high performance nanocomposite, by improving the compatibility of CNTs in polymer and the interfacial force between CNTs and polymer.
We report a novel method to prepare nanohybrid shish-kebab (NHSK) structure of polyethylene (PE) and carbon nanotube (CNT). Pristine CNTs without surface modification with high concentration was effective dispersed in xylene solution by a simple shearing method, which induces the quick crystallization of PE in xylene to form a novel NHSK structure with more dense and smaller PE kebab on CNT axis. The flocculated NHSK product was transferred quickly from the xylene solution to the ethanol solution, in order to shorten the preparation time. The freeze- drying method was used in vacuum instead of high-temperature drying to avoid aggregation of NHSK product. These improvements allow the formation of NHSK with an absolute yield of 200 mg · h-1, which is 2000 folds of that reported previously. It is favorable to apply this structured material in high performance nanocomposite, by improving the compatibility of CNTs in polymer and the interfacial force between CNTs and polymer.