论文部分内容阅读
Objective To explore the differentiation fates of rat neural stem cells (NSCs) in different environmental conditions. Methods NSCs derived from 16-day-old rat embryo were proliferated in vitro and implanted into the brain of rats with intra-cerebral hemorrhage. At the same time some NSCs were co-cultured in vitro with Schwann cells derived from newborn rats. MAP-2, GFAP and GalC (which are the specific markers of neural cells, astrocytes and oligodendrocytes respectively), BrdU and β-tubulin were detected by immunohistochemical and immunofluorescent methods. Results BrdU positive cells that were implanted into the brain dfstributed around the hemorrhagic area. The majority of them were GFAP positive astrocytes while a few of them were β-tubulin positive neural cells or GalC positive oligodendrocytes. After being co-cultured with Schwann cells in vitro, NSCs are predominately shown β-tubulin and MAP-2 positive, and only a minority of them were GFAP or GalC positive. Conclusions The hemorrhagic environ
Objective To explore the differentiation fates of rat neural stem cells (NSCs) in different environmental conditions. Methods NSCs derived from 16-day-old rat embryo were proliferated in vitro and implanted into the brain of rats with intra-cerebral hemorrhage. At the same time some NSCs were co-cultured in vitro with Schwann cells derived from newborn rats. MAP-2, GFAP and GalC (which are the specific markers of neural cells, astrocytes and oligodendrocytes respectively), BrdU and β-tubulin were detected by immunohistochemical and immunofluorescent methods. Results BrdU positive cells that were implanted into the brain dfslusive around the hemorrhagic area. The majority of them were GFAP positive astrocytes while a few of them were β-tubulin positive neural cells or GalC positive oligodendrocytes. After being co-cultured with Schwann cells in vitro, NSCs are predominately shown β-tubulin and MAP-2 positive, and only a minority of them were GFAP or GalC positive. Conclusions The h emorrhagic environ