论文部分内容阅读
随着深度相机的应用,三维场景的重建越来越简单、快速。从单视角的深度场景图像中检索出物体还是比较困难,特别是物体的姿态估计。提出了一种基于卷积神经网络的深度图像姿态估计算法。该算法采用了回归估计来实现姿态的估计。通过3D模型合成大量不同姿态的深度图像样本,从而解决回归估计需要稠密采样的训练数据问题。对于不同类别的物体,分别用线性回归估计来拟合姿态函数。在基于Le Net-5模型上修改了卷积神经网络的结构,使得该网络适用于回归估计。实验结果表明:我们的方法取得了平均误差约4.3°的估计结果,优于其他文献