论文部分内容阅读
The Sino-Mongolian border areas underwent two important tectonic events during Mesozoic time after late Paleozoic orogeny: a late Triassic to earlier Jurassic contractional event that resulted in a large-scale south-vergent thrust during the orogeny and a late Jurassic-earlier Cretaceous extensional event in a north-south direction that formed a metamorphic core complex. The kinematic and dynamic analyses show that the thrust sheet moved southwards with a kinematic vorticity number of ca. -0.10 and sub-horizontal maximum compressive stress axis that belongs to a contraction-thickening shear. The upper plate of the late-orogenic detachment relatively moved in a 165°direction. The average kinematic vorticity in its earlier stage was 0.74 that belongs to simple shear dominated shearing and related to the maximum compressive stress axes dipping at ~66°, while the later average kinematic vorticity was ~0.55°that belongs to pure shear dominated shearing with sub-vertical maximum compressive stress axes. This suggests that the thrusting led to the crust thickened and the lower plate rocks that were originally located in the upper crust depressed through a brittle-ductile transition zone into the lower crust and became warmer. The heated rocks trended to uplift since their increasing volume and decreasing density while the loading of the upper-plate rocks increased due to the structural thickening. Under the combined effect of the loading and the thermal-uplifting, the ductile shear zone in between increased in its component of vertical pure shear. Once its pure-shear component exceeded its simple-shear one the ductile shear zone became an extension-thinned shear zone. This progressive transitional process reflects internal and essential temporal and spatial relationships: the extensional factor nucleated during the crust thickening by thrusting and increase of the extensional factor finally led to late-orogenic collapse.