【摘 要】
:
钨酸盐材料是重要的无机功能材料.对钨酸盐材料的研究进展进行了综述,介绍了高温固相法、水热法、溶剂热法、微波水热法、共沉淀法、溶胶-凝胶法、燃烧法、喷雾热解法等多种合成钨酸盐材料的方法,并对各种制备方法的特点进行了归纳和总结.同时,概述了钨酸盐材料在太阳能电池、照明和显示、储氢材料、温度传感器以及光催化材料等领域的应用情况.
【机 构】
:
河北大学化学与环境科学学院,保定071002
论文部分内容阅读
钨酸盐材料是重要的无机功能材料.对钨酸盐材料的研究进展进行了综述,介绍了高温固相法、水热法、溶剂热法、微波水热法、共沉淀法、溶胶-凝胶法、燃烧法、喷雾热解法等多种合成钨酸盐材料的方法,并对各种制备方法的特点进行了归纳和总结.同时,概述了钨酸盐材料在太阳能电池、照明和显示、储氢材料、温度传感器以及光催化材料等领域的应用情况.
其他文献
界面是复合材料极为重要的微结构,复合材料的综合力学性能很大程度上取决于纤维与基体之间的界面黏结性能.准确地评价纤维与基体间界面结合情况,进而对界面进行优化设计与调控,是制备高性能复合材料的关键之一,复合材料界面力学性能表征技术也因此备受关注.从微观和宏观两个方面详细阐述了纤维增强复合材料界面力学性能的表征方法,并分析对比了两类表征方法的优缺点,对开发新型复合材料界面力学性能表征方法及实验仪器具有重要的指导作用.
纳米纤维素以其独特的形态特征,优异的机械强度、生物相容性和生物降解性在纳米材料领域得到了广泛的应用.其高比表面积和丰富的活性表面基团可以通过多种物理或化学方法负载纳米金属粒子,为此,综述了银、金、铜和氧化锌等纳米金属粒子在纳米纤维素上的负载方法,并介绍了此类复合材料在抗菌材料、传感器和催化剂等领域的应用.
微纳层叠共挤技术能够方便快捷地制备具有多层交替结构的聚合物复合材料,通过串联多个层倍增单元可以实现制品层数的指数级增长.概述了微纳层叠共挤技术的发展进程,对近年来国内外微纳层叠功能复合材料的研究进展进行综述,重点介绍了多层交替结构复合材料优异的形状记忆性能、介电性能、阻隔性能和力学性能,以期为利用微纳层叠共挤技术研制功能复合材料及高端应用提供参考.
选用褐煤作为原材料,分析其吸附汞离子的动力学特征,探讨其在不同温度、不同pH值、不同离子强度下的吸咐效果.结果表明,褐煤对汞离子的吸附在0~5 min内为快速吸附阶段,此后呈现为慢速吸附阶段,直至20 min基本达到吸附平衡.随着温度(25~55℃)和pH(3~6)的升高,褐煤对Hg2+的饱和吸附量增加.而随着离子强度(CaCl2 0.005~0.05 mol/L)的增大,褐煤对Hg2+的饱和吸附量降低.准二级动力学方程能更好的拟合褐煤对Hg2+的吸附过程,说明该吸附过程为化学吸附.
在石油固井中影响固井质量的因素非常多,包括钻井液性能、水泥浆性能等,因此在石油固井中就需要做好井眼准备工作、优化水泥浆配方和性能、优选固井工具,提高顶替效率,保证钻井液具有良好的性能,这样才能有效地保证石油固井质量.
为高效利用低品位热能和LNG冷能,构建了简单ORC、回热ORC、再热ORC、回热-再热ORC和双级并联有机朗肯循环发电系统.综合考虑工质的热物性和环境友好度等因素,筛选出8种综合性能较好的有机工质,对其展开模拟分析.研究结果表明:在给定运行工况下,存在一个最佳LNG蒸发温度,使系统的?效率最佳;冷凝器的?损失是系统总?损失的主要组成部分,减少该部件不可逆损失是提高热能与冷能利用效率的关键;以Propane为循环工质时,回热-再热式ORC系统获得39.93%的最佳?效率,是低温热能-LNG冷能联合发电系统的
离子液体作为添加剂提高聚合物性能表现出诸多优势.综述了几年来功能化离子液体提高聚合物材料阻燃性能的研究进展.具体讨论了聚合过程中离子液体固化行为机理对提高阻燃性能的研究;总结了离子液体以及离子液体结合无机材料阻燃聚合物研究进展.最后展望了离子液体在阻燃聚合物的应用和研究方向.
表面离子印迹聚合物近年来在固相萃取、膜分离、化学生物传感器等领域展现出良好的应用前景.表面离子印迹技术是将离子识别位点设计在载体表面或接近表面的地方,制得的表面离子印迹聚合物与传统的离子印迹聚合物相比,具有目标离子更易接近识别位点、吸附更快、吸附容量更高等优点.简述了表面离子印迹的最新研究进展,根据载体种类分别介绍了以硅材料、磁性材料、碳纳米管、石墨烯等为载体的表面离子印迹技术.
超疏水材料具有特殊的润湿性,良好的自清洁、防腐蚀、防结冰等性能,能够有效地减少航行体在行驶过程中受到的海水阻力与能源消耗、抑制海洋生物附着、减缓海水腐蚀、降低冰附着力,在海洋领域具有良好的应用潜力.综述了超疏水材料的制备方法及其在海洋领域最新应用研究,并对其未来发展趋势进行了总结和展望.
随着光学纯化合物需求的不断增加,手性分离的研究在医药、化学、生物学等领域具有重要意义.膜分离法是近年来发展的一种新型节能技术,具有连续操作、易于放大、无污染等优点,被认为是一种具有潜力的大规模拆分对映异构体的方法.大多数一维聚合物手性分离膜的选择性与通量之间呈反向关系,且耐溶剂性差,导致分离性能不稳定,通量较低.有机多孔材料具有较大的比表面积和永久孔隙率,对有机溶剂具有极高的稳定性,在合成过程中引入手性官能团制备出手性材料可以实现在手性分离膜领域的应用.