论文部分内容阅读
The difference of conductivity between primary iron-rich phases and aluminum melt has been used to separate them by electromagnetic force (EMF) which is induced by imposing a direct electric current and a steady magnetic field in molten Al-Si alloy. Theoretical analysis and experiments on self-designed electromagnetic separation indicates that primary needle-like β phases are difficult to separate; while primary α iron-rich phases can be separated by electromagnetic separation. Primary iron-rich phases have been removed from the melt successfully when the molten metal flows horizontally through separation channel. The iron content is reduced from 1.13% to 0.41%.
The difference of conductivity between primary iron-rich phases and aluminum melt has been used to separate them by electromagnetic force (EMF) which is induced by imposing a direct electric current and a steady magnetic field in molten Al-Si alloy. Theoretical analysis and experiments on self-designed electromagnetic separation indicates that primary needle-like β phases are difficult to separate; while primary iron-rich phases can be separated by electromagnetic separation. Primary iron-rich phases have been removed from the melt successfully when the molten metal flows horizontally through separation channel. The iron content is reduced from 1.13% to 0.41%.