论文部分内容阅读
提出了一种基于非高斯双变量模型复数Curvelet变换的图像降噪新方法。采用具有近似移不变性的复数小波变换代替原Curvelet变换中的小波变换,并用改进的Radon变换避免了原Radon变换中一维傅里叶反变换在频域中采样不足的缺陷,从而保证了新的复数Curvelet变换具有抗混叠性能。充分利用信号系数层间相关性强而噪声系数层间相关性弱的特点,采用非高斯双变量对复数Curvelet变换域系数进行建模,并通过BayesianMAP估计器对信号系数进行估计,从而实现降噪目的。实验结果表明,本文去噪法得到