论文部分内容阅读
目标跟踪技术在日常生活和生产中有着广泛的应用,但是设计一种具有鲁棒性、准确性和实时性的跟踪算法仍具有很大的难度。为了提高跟踪算法的性能,设计了一种帧间连续结构稀疏表示目标跟踪算法。该算法在粒子滤波框架下进行,采用结构稀疏表示的原理重构候选目标。首先采用目标和背景样本构建稀疏字典,以提高算法对目标和背景的区分能力。然后,构建含有帧间连续约束项的结构稀疏表示目标方程,该目标方程可以有效利用目标状态的连续性来确定目标状态。进而,根据重构残差设计了一种相似度描述方法,与传统方法相比,该方法对相似目标不敏感。