论文部分内容阅读
针对存在刚体运动形态的杆和Euler梁,借助共轭系统的概念和性质,本文证明了它们都具有如下定性性质:设ui(x)是存在刚体运动形态的杆或Euler梁的连续系统的第i(i =1,2,…)阶位移振型,则对任意的2≤p≤q和不全为零的实常数ci(i =p,p +1,…,q),函数u(x)=cpup(x)+cp+1up+1(x)+…+cquq(x),0<x <l在区间(0,l)内的节点不少于p -1个,而其零点不多于q -1个。