论文部分内容阅读
发现移动用户在特定时间段的轨迹特征是实现用户个性化推荐服务的关键之一.采用过滤--精炼策略,研究了如何从单用户的大量轨迹数据中发现其在较长时间内的特定时间段的兴趣点.在过滤阶段,将用户连续若干天中同一特定时间段内的轨迹数据进行基于密度的聚类,从而得到用户在这些天中每天的该特定时间段的停留点.在精炼阶段,对所有的停留点再一次聚类,进而得到用户在这些天中该特定时间段的兴趣点.最后,通过实验验证了该方法的有效性.