论文部分内容阅读
We investigate how the random long-range interactions affect the synchronization features in networks of inertial ratchets,where each ratchet is driven by a periodic time-dependent exteal force,under the influence of an asymmetric periodic potential.It is found that for a given coupling strength C,the synchronization of the coupled ratchets is induced as the fraction of random long-range interactions p increases and the ratchet networks reachfull synchronization for a larger p.It is also found that the system reaches synchronization more effectively for a stronger coupling strength.Transport phenomena play a crucial role in a large variety of processes in nature,from biological through physical to social systems.[1-6] In the past two decades,there have been attempts to model the transport properties of classical deterministic inertial ratchets.[7-9] For example,Mateos[10,11] found the origin of the current reversal as a bifurcation from a chaotic to a periodic regime;Vale et al.[12] and Endow et al.[13] found that the kinesin direction of motion along microtubules could be reversed by adjusting the architecture of a small domain of the protein.More interestingly,recent investigations have found that mutual connection plays a vital role in cooperative transport properties of groups of interacting elements.[14]