论文部分内容阅读
为克服传统的全监督机器学习模型的训练依赖于大量的标注样本的弱点,给出一种半监督学习和主动学习相结合的算法。根据主动学习选择策略选择最有价值的句子来标注,结合半监督来充分利用未标注的句子。结合汉语语料的特点,改进主动学习选择策略。实验结果表明,与采用随机选择标注样本相比,在使用相同数目的训练样本的情况下,该算法可以使学习器的F-score调高10.2%,在分类器到达相同性能的情况下,人工标注量可以减少32%,学习器对标注样本的需求得到了有效降低。