论文部分内容阅读
在面向旋转机械的神经网络工作状态预测中,存在着对新数据强调不足的缺陷,为了弥补原有的神经网络存在的缺陷,提出一种新的神经网络预测方法,即基于均值函数新息加权的神经网络预测方法.依据时间序列数据的新旧程度对预测值贡献的大小,通过均值函数赋给输入数据不同的权值系数,提高神经网络的预测精度.在旋转机械工作状态预测中取得较为理想的预测效果.