论文部分内容阅读
本文在生成的二维离散裂隙网络中利用逾渗理论突出裂隙的主干网,保存了明显的优势流路径。在此基础上,基于渗流的连续性方程和立方定律,在稳定的、单相的、完全饱和的渗流系统使用DFN模型研究随机产生的裂隙网络中的流体流动。利用matlab程序实现了裂隙岩体渗流数值模拟,在该模型中使用导水系数而非Priest的孔径,且导水系数服从对数正态分布实现了离散裂隙网络模拟的非均质性;在随机的Monte Carlo模拟中,进行了总流量的预测。模拟实验结果表明:总流量的变异系数在合理的范围内,该方法为裂隙水的稳定渗流计算提供了简单、实用的计算方法。
In this paper, we use the percolation theory to highlight the fracture network in the two-dimensional discrete fracture network, and save the obvious dominant flow path. Based on the continuity equation and the cubic law of seepage, the DFN model is used to study the fluid flow in a randomly generated fracture network in a stable, single-phase, and fully saturated seepage system. The matlab program is used to simulate the seepage of fractured rock mass. The water conductivity coefficient is used instead of the pore diameter of Priest, and the water conductivity is logarithmically normalized to realize the heterogeneity of discrete fracture network simulation. Monte Carlo simulation, the total flow of the forecast. The simulation results show that the coefficient of variation of the total flow rate is within a reasonable range, and this method provides a simple and practical method for the steady seepage calculation of fissure water.