一种新的K—means最佳聚类数确定方法

来源 :现代计算机:上下旬 | 被引量 : 0次 | 上传用户:sunnynoon
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在传统的K-means算法中,聚类数K是随机给定的,K值选取不合理会造成K—meall$算法陷入局部最优。针对这个缺点,提出一种新的K—means聚类数确定方法,根据聚类算法中类内相似度最大差异度最小和类问差异度最大相似度最小的基本原则.提出距离评价函数作为最佳聚类数的检验函数,建立相应的数学模型,并通过实例结果进一步验证新算法的有效性。
其他文献
为了提高噪声环境中的语音识别率,将独立成分分析(ICA)方法用于语音信号特征提取.并使用遗传算法(GA)将提取出来的高维特征进行选择,最后得到的语音特征被用于基于高斯混合模型的语
模糊神经网络汇集神经网络和模糊逻辑的优点,能有效避免神经网络的“黑箱”操作,但存在“维数爆炸”现象。将粗糙集和模糊神经网络有机集成,构建财务困境预警的二阶段模型:第一阶